#include "beforeProcess.h" #include "RKNNManager.hpp" #include "RgaUtils.h" #include "im2d.h" #include "postprocess.h" #include #include #include #include RKNNManager::RKNNManager() : ctx(0), model_data(nullptr), model_data_size(0), resize_buf(nullptr) {} RKNNManager::~RKNNManager() { release(); } bool RKNNManager::initialize(const std::string &model_path) { model_data = load_model(model_path.c_str(), &model_data_size); if (!model_data) return false; int ret = rknn_init(&ctx, model_data, model_data_size, 0, NULL); if (ret < 0) { std::cerr << "rknn_init error! ret=" << ret << std::endl; return false; } ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num)); if (ret < 0) { std::cerr << "rknn_query error! ret=" << ret << std::endl; return false; } memset(input_attrs, 0, sizeof(input_attrs)); for (int i = 0; i < io_num.n_input; i++) { input_attrs[i].index = i; ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]), sizeof(rknn_tensor_attr)); if (ret < 0) { std::cerr << "rknn_query error! ret=" << ret << std::endl; return false; } } memset(output_attrs, 0, sizeof(output_attrs)); for (int i = 0; i < io_num.n_output; i++) { output_attrs[i].index = i; ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]), sizeof(rknn_tensor_attr)); if (ret < 0) return false; } if (input_attrs[0].fmt == RKNN_TENSOR_NCHW) { channel = input_attrs[0].dims[1]; height = input_attrs[0].dims[2]; width = input_attrs[0].dims[3]; } else { height = input_attrs[0].dims[1]; width = input_attrs[0].dims[2]; channel = input_attrs[0].dims[3]; } return true; } /// @brief 用于给输入图像进行推理 /// @param input_image 输入图像的格式为BGR /// @param output_image 直接将结果绘制到输出图像 /// @return bool RKNNManager::infer(int index,const cv::Mat &input_image, cv::Mat &output_image) { rknn_input inputs[1]; memset(inputs, 0, sizeof(inputs)); inputs[0].index = 0; inputs[0].type = RKNN_TENSOR_UINT8; inputs[0].size = width * height * channel; inputs[0].fmt = RKNN_TENSOR_NHWC; inputs[0].pass_through = 0; if (input_image.cols != width || input_image.rows != height) { resize_buf = malloc(height * width * channel); memset(resize_buf, 0x00, height * width * channel); rga_buffer_t src = wrapbuffer_virtualaddr((void *)input_image.data, input_image.cols, input_image.rows, RK_FORMAT_RGB_888); rga_buffer_t dst = wrapbuffer_virtualaddr((void *)resize_buf, width, height, RK_FORMAT_RGB_888); im_rect src_rect, dst_rect; IM_STATUS status = imresize(src, dst); if (status != IM_STATUS_SUCCESS) return false; inputs[0].buf = resize_buf; } else { inputs[0].buf = (void *)input_image.data; } int ret = rknn_inputs_set(ctx, io_num.n_input, inputs); if (ret < 0) return false; rknn_output outputs[io_num.n_output]; memset(outputs, 0, sizeof(outputs)); for (int i = 0; i < io_num.n_output; i++) { outputs[i].want_float = 0; } ret = rknn_run(ctx, NULL); if (ret < 0) return false; ret = rknn_outputs_get(ctx, io_num.n_output, outputs, NULL); if (ret < 0) return false; float scale_w = (float)width / input_image.cols; float scale_h = (float)height / input_image.rows; detect_result_group_t detect_result_group; std::vector out_scales; std::vector out_zps; for (int i = 0; i < io_num.n_output; ++i) { out_scales.push_back(output_attrs[i].scale); out_zps.push_back(output_attrs[i].zp); } post_process((int8_t *)outputs[0].buf, (int8_t *)outputs[1].buf, (int8_t *)outputs[2].buf, height, width, BOX_THRESH, NMS_THRESH, scale_w, scale_h, out_zps, out_scales, &detect_result_group); output_image = input_image.clone(); char text[256]; for (int i = 0; i < detect_result_group.count; i++) { detect_result_t *det_result = &(detect_result_group.results[i]); //sprintf(text, "%s %.1f%%", det_result->name, det_result->prop * 100); //std::cout << index << " Class: " << det_result->name << ", Confidence: " << det_result->prop * 100 << "%" << std::endl; // int x1 = det_result->box.left; // int y1 = det_result->box.top; // int x2 = det_result->box.right; // int y2 = det_result->box.bottom; // //std::cout << "Box: (" << x1 << ", " << y1 << ") - (" << x2 << ", " << y2 << ")" << std::endl; // rectangle(output_image, cv::Point(x1, y1), cv::Point(x2, y2), cv::Scalar(255, 0, 0, 255), 3); // putText(output_image, text, cv::Point(x1, y1 + 12), cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0)); } rknn_outputs_release(ctx, io_num.n_output, outputs); return true; } void RKNNManager::release() { if (ctx) { rknn_destroy(ctx); ctx = 0; } if (model_data) { free(model_data); model_data = nullptr; } if (resize_buf) { free(resize_buf); resize_buf = nullptr; } } unsigned char *load_model(const char *filename, int *model_size) { FILE *fp; unsigned char *data; fp = fopen(filename, "rb"); if (NULL == fp) { printf("Open file %s failed.\n", filename); return NULL; } fseek(fp, 0, SEEK_END); int size = ftell(fp); data = load_data(fp, 0, size); fclose(fp); *model_size = size; return data; }