123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203 |
- #include "beforeProcess.h"
- #include "RKNNManager.hpp"
- #include "RgaUtils.h"
- #include "im2d.h"
- #include "postprocess.h"
- #include <dlfcn.h>
- #include <sys/time.h>
- #include <exception>
- #include <iostream>
- RKNNManager::RKNNManager() : ctx(0), model_data(nullptr), model_data_size(0), resize_buf(nullptr) {}
- RKNNManager::~RKNNManager()
- {
- release();
- }
- bool RKNNManager::initialize(const std::string &model_path)
- {
- model_data = load_model(model_path.c_str(), &model_data_size);
- if (!model_data)
- return false;
- int ret = rknn_init(&ctx, model_data, model_data_size, 0, NULL);
- if (ret < 0)
- {
- std::cerr << "rknn_init error! ret=" << ret << std::endl;
- return false;
- }
- ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num));
- if (ret < 0)
- {
- std::cerr << "rknn_query error! ret=" << ret << std::endl;
- return false;
- }
- memset(input_attrs, 0, sizeof(input_attrs));
- for (int i = 0; i < io_num.n_input; i++)
- {
- input_attrs[i].index = i;
- ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]), sizeof(rknn_tensor_attr));
- if (ret < 0)
- {
- std::cerr << "rknn_query error! ret=" << ret << std::endl;
- return false;
- }
- }
- memset(output_attrs, 0, sizeof(output_attrs));
- for (int i = 0; i < io_num.n_output; i++)
- {
- output_attrs[i].index = i;
- ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]), sizeof(rknn_tensor_attr));
- if (ret < 0)
- return false;
- }
- if (input_attrs[0].fmt == RKNN_TENSOR_NCHW)
- {
- channel = input_attrs[0].dims[1];
- height = input_attrs[0].dims[2];
- width = input_attrs[0].dims[3];
- }
- else
- {
- height = input_attrs[0].dims[1];
- width = input_attrs[0].dims[2];
- channel = input_attrs[0].dims[3];
- }
- return true;
- }
- /// @brief 用于给输入图像进行推理
- /// @param input_image 输入图像的格式为BGR
- /// @param output_image 直接将结果绘制到输出图像
- /// @return
- bool RKNNManager::infer(int index,const cv::Mat &input_image, cv::Mat &output_image)
- {
- rknn_input inputs[1];
- memset(inputs, 0, sizeof(inputs));
- inputs[0].index = 0;
- inputs[0].type = RKNN_TENSOR_UINT8;
- inputs[0].size = width * height * channel;
- inputs[0].fmt = RKNN_TENSOR_NHWC;
- inputs[0].pass_through = 0;
- if (input_image.cols != width || input_image.rows != height)
- {
- resize_buf = malloc(height * width * channel);
- memset(resize_buf, 0x00, height * width * channel);
- rga_buffer_t src = wrapbuffer_virtualaddr((void *)input_image.data, input_image.cols, input_image.rows, RK_FORMAT_RGB_888);
- rga_buffer_t dst = wrapbuffer_virtualaddr((void *)resize_buf, width, height, RK_FORMAT_RGB_888);
- im_rect src_rect, dst_rect;
- IM_STATUS status = imresize(src, dst);
- if (status != IM_STATUS_SUCCESS)
- return false;
- inputs[0].buf = resize_buf;
- }
- else
- {
- inputs[0].buf = (void *)input_image.data;
- }
- int ret = rknn_inputs_set(ctx, io_num.n_input, inputs);
- if (ret < 0)
- return false;
- rknn_output outputs[io_num.n_output];
- memset(outputs, 0, sizeof(outputs));
- for (int i = 0; i < io_num.n_output; i++)
- {
- outputs[i].want_float = 0;
- }
- ret = rknn_run(ctx, NULL);
- if (ret < 0)
- return false;
- ret = rknn_outputs_get(ctx, io_num.n_output, outputs, NULL);
- if (ret < 0)
- return false;
- float scale_w = (float)width / input_image.cols;
- float scale_h = (float)height / input_image.rows;
- detect_result_group_t detect_result_group;
- std::vector<float> out_scales;
- std::vector<int32_t> out_zps;
- for (int i = 0; i < io_num.n_output; ++i)
- {
- out_scales.push_back(output_attrs[i].scale);
- out_zps.push_back(output_attrs[i].zp);
- }
- post_process((int8_t *)outputs[0].buf, (int8_t *)outputs[1].buf, (int8_t *)outputs[2].buf, height, width,
- BOX_THRESH, NMS_THRESH, scale_w, scale_h, out_zps, out_scales, &detect_result_group);
- output_image = input_image.clone();
- char text[256];
- for (int i = 0; i < detect_result_group.count; i++)
- {
- detect_result_t *det_result = &(detect_result_group.results[i]);
- //sprintf(text, "%s %.1f%%", det_result->name, det_result->prop * 100);
- //std::cout << index << " Class: " << det_result->name << ", Confidence: " << det_result->prop * 100 << "%" << std::endl;
-
- // int x1 = det_result->box.left;
- // int y1 = det_result->box.top;
- // int x2 = det_result->box.right;
- // int y2 = det_result->box.bottom;
- // //std::cout << "Box: (" << x1 << ", " << y1 << ") - (" << x2 << ", " << y2 << ")" << std::endl;
- // rectangle(output_image, cv::Point(x1, y1), cv::Point(x2, y2), cv::Scalar(255, 0, 0, 255), 3);
- // putText(output_image, text, cv::Point(x1, y1 + 12), cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0));
- }
- rknn_outputs_release(ctx, io_num.n_output, outputs);
- return true;
- }
- void RKNNManager::release()
- {
- if (ctx)
- {
- rknn_destroy(ctx);
- ctx = 0;
- }
- if (model_data)
- {
- free(model_data);
- model_data = nullptr;
- }
- if (resize_buf)
- {
- free(resize_buf);
- resize_buf = nullptr;
- }
- }
- unsigned char *load_model(const char *filename, int *model_size)
- {
- FILE *fp;
- unsigned char *data;
- fp = fopen(filename, "rb");
- if (NULL == fp)
- {
- printf("Open file %s failed.\n", filename);
- return NULL;
- }
- fseek(fp, 0, SEEK_END);
- int size = ftell(fp);
- data = load_data(fp, 0, size);
- fclose(fp);
- *model_size = size;
- return data;
- }
|