#include "beforeProcess.h" #include "PPYOLOE.hpp" #include "RgaUtils.h" #include "im2d.h" #include "postprocess.h" #include #include #include #include PPYOLOE::PPYOLOE() : ctx(0), model_data(nullptr), model_data_size(0), resize_buf(nullptr) {} PPYOLOE::~PPYOLOE() { release(); } bool PPYOLOE::initialize(const std::string &model_path) { static int index_flag = 0; this->index = index_flag++; model_data = load_model(model_path.c_str(), &model_data_size); if (!model_data) { std::cerr << "read model failed!" << std::endl; return false; } int ret = rknn_init(&ctx, model_data, model_data_size, 0, NULL); if (ret < 0) { std::cerr << "rknn_init error! ret=" << ret << std::endl; return false; } // 获取模型输入输出数量 ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num)); if (ret != RKNN_SUCC) { std::cerr << "rknn_query error! ret=" << ret << std::endl; return false; } // 获取模型输入属性 input_attrs = new rknn_tensor_attr[io_num.n_input]; memset(input_attrs, 0, sizeof(input_attrs)); for (int i = 0; i < io_num.n_input; i++) { input_attrs[i].index = i; ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]), sizeof(rknn_tensor_attr)); if (ret < 0) { std::cerr << "rknn_query error! ret=" << ret << std::endl; return false; } } // 获取模型输出属性 output_attrs = new rknn_tensor_attr[io_num.n_output]; memset(output_attrs, 0, sizeof(output_attrs)); for (int i = 0; i < io_num.n_output; i++) { output_attrs[i].index = i; ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]), sizeof(rknn_tensor_attr)); if (ret < RKNN_SUCC) { return false; } } if (output_attrs[0].qnt_type == RKNN_TENSOR_QNT_AFFINE_ASYMMETRIC && output_attrs[0].type == RKNN_TENSOR_INT8) { is_quant = true; } else { is_quant = false; } if (input_attrs[0].fmt == RKNN_TENSOR_NCHW) { channel = input_attrs[0].dims[1]; height = input_attrs[0].dims[2]; width = input_attrs[0].dims[3]; } else { height = input_attrs[0].dims[1]; width = input_attrs[0].dims[2]; channel = input_attrs[0].dims[3]; } return true; } /// @brief 用于给输入图像进行推理 /// @param input_image 输入图像的格式为BGR /// @param output_image 直接将结果绘制到输出图像 /// @return bool PPYOLOE::infer(int index, unsigned char *input_data, int input_width, int intput_height, DataPackage *result) { rknn_input inputs[io_num.n_input]; rknn_output outputs[io_num.n_output]; memset(inputs, 0, sizeof(inputs)); memset(outputs, 0, sizeof(outputs)); const float nms_threshold = 0.45; // 默认的NMS阈值 const float box_conf_threshold = 0.3; // 默认的置信度阈值 inputs[0].index = 0; inputs[0].type = RKNN_TENSOR_UINT8; inputs[0].size = width * height * channel; inputs[0].fmt = RKNN_TENSOR_NHWC; inputs[0].pass_through = 0; inputs[0].buf = (void *)input_data; int ret = rknn_inputs_set(ctx, io_num.n_input, inputs); if (ret < 0) { return false; } memset(outputs, 0, sizeof(outputs)); for (int i = 0; i < io_num.n_output; i++) { outputs[i].want_float = 0; } ret = rknn_run(ctx, NULL); if (ret < 0) { return false; } ret = rknn_outputs_get(ctx, io_num.n_output, outputs, NULL); if (ret < 0) { return false; } post_process(this, outputs, box_conf_threshold, nms_threshold, &result->Result, 1); rknn_outputs_release(ctx, io_num.n_output, outputs); return true; } void PPYOLOE::release() { if (ctx) { rknn_destroy(ctx); ctx = 0; } if (model_data) { free(model_data); model_data = nullptr; } if (resize_buf) { free(resize_buf); resize_buf = nullptr; } } unsigned char *load_model(const char *filename, int *model_size) { FILE *fp; unsigned char *data; fp = fopen(filename, "rb"); if (NULL == fp) { printf("Open file %s failed.\n", filename); return NULL; } fseek(fp, 0, SEEK_END); int size = ftell(fp); data = load_data(fp, 0, size); fclose(fp); *model_size = size; return data; }