PPYOLOE.cpp 4.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183
  1. #include "beforeProcess.h"
  2. #include "PPYOLOE.hpp"
  3. #include "RgaUtils.h"
  4. #include "im2d.h"
  5. #include "postprocess.h"
  6. #include <dlfcn.h>
  7. #include <sys/time.h>
  8. #include <exception>
  9. #include <iostream>
  10. PPYOLOE::PPYOLOE() : ctx(0), model_data(nullptr), model_data_size(0), resize_buf(nullptr) {}
  11. PPYOLOE::~PPYOLOE()
  12. {
  13. release();
  14. }
  15. bool PPYOLOE::initialize(const std::string &model_path)
  16. {
  17. static int index_flag = 0;
  18. this->index = index_flag++;
  19. model_data = load_model(model_path.c_str(), &model_data_size);
  20. if (!model_data)
  21. {
  22. std::cerr << "read model failed!" << std::endl;
  23. return false;
  24. }
  25. int ret = rknn_init(&ctx, model_data, model_data_size, 0, NULL);
  26. if (ret < 0)
  27. {
  28. std::cerr << "rknn_init error! ret=" << ret << std::endl;
  29. return false;
  30. }
  31. // 获取模型输入输出数量
  32. ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num));
  33. if (ret != RKNN_SUCC)
  34. {
  35. std::cerr << "rknn_query error! ret=" << ret << std::endl;
  36. return false;
  37. }
  38. // 获取模型输入属性
  39. input_attrs = new rknn_tensor_attr[io_num.n_input];
  40. memset(input_attrs, 0, sizeof(input_attrs));
  41. for (int i = 0; i < io_num.n_input; i++)
  42. {
  43. input_attrs[i].index = i;
  44. ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]), sizeof(rknn_tensor_attr));
  45. if (ret < 0)
  46. {
  47. std::cerr << "rknn_query error! ret=" << ret << std::endl;
  48. return false;
  49. }
  50. }
  51. // 获取模型输出属性
  52. output_attrs = new rknn_tensor_attr[io_num.n_output];
  53. memset(output_attrs, 0, sizeof(output_attrs));
  54. for (int i = 0; i < io_num.n_output; i++)
  55. {
  56. output_attrs[i].index = i;
  57. ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]), sizeof(rknn_tensor_attr));
  58. if (ret < RKNN_SUCC)
  59. {
  60. return false;
  61. }
  62. }
  63. if (output_attrs[0].qnt_type == RKNN_TENSOR_QNT_AFFINE_ASYMMETRIC && output_attrs[0].type == RKNN_TENSOR_INT8)
  64. {
  65. is_quant = true;
  66. }
  67. else
  68. {
  69. is_quant = false;
  70. }
  71. if (input_attrs[0].fmt == RKNN_TENSOR_NCHW)
  72. {
  73. channel = input_attrs[0].dims[1];
  74. height = input_attrs[0].dims[2];
  75. width = input_attrs[0].dims[3];
  76. }
  77. else
  78. {
  79. height = input_attrs[0].dims[1];
  80. width = input_attrs[0].dims[2];
  81. channel = input_attrs[0].dims[3];
  82. }
  83. return true;
  84. }
  85. /// @brief 用于给输入图像进行推理
  86. /// @param input_image 输入图像的格式为BGR
  87. /// @param output_image 直接将结果绘制到输出图像
  88. /// @return
  89. bool PPYOLOE::infer(int index, unsigned char *input_data, int input_width, int intput_height)
  90. {
  91. rknn_input inputs[io_num.n_input];
  92. rknn_output outputs[io_num.n_output];
  93. memset(inputs, 0, sizeof(inputs));
  94. memset(outputs, 0, sizeof(outputs));
  95. const float nms_threshold = 0.45; // 默认的NMS阈值
  96. const float box_conf_threshold = 0.5; // 默认的置信度阈值
  97. inputs[0].index = 0;
  98. inputs[0].type = RKNN_TENSOR_UINT8;
  99. inputs[0].size = width * height * channel;
  100. inputs[0].fmt = RKNN_TENSOR_NHWC;
  101. inputs[0].pass_through = 0;
  102. inputs[0].buf = (void *)input_data;
  103. int ret = rknn_inputs_set(ctx, io_num.n_input, inputs);
  104. if (ret < 0)
  105. {
  106. return false;
  107. }
  108. memset(outputs, 0, sizeof(outputs));
  109. for (int i = 0; i < io_num.n_output; i++)
  110. {
  111. outputs[i].want_float = 0;
  112. }
  113. ret = rknn_run(ctx, NULL);
  114. if (ret < 0)
  115. {
  116. return false;
  117. }
  118. ret = rknn_outputs_get(ctx, io_num.n_output, outputs, NULL);
  119. if (ret < 0)
  120. {
  121. return false;
  122. }
  123. object_detect_result_list od_results;
  124. post_process(this, outputs, box_conf_threshold, nms_threshold, &od_results, 1);
  125. rknn_outputs_release(ctx, io_num.n_output, outputs);
  126. return true;
  127. }
  128. void PPYOLOE::release()
  129. {
  130. if (ctx)
  131. {
  132. rknn_destroy(ctx);
  133. ctx = 0;
  134. }
  135. if (model_data)
  136. {
  137. free(model_data);
  138. model_data = nullptr;
  139. }
  140. if (resize_buf)
  141. {
  142. free(resize_buf);
  143. resize_buf = nullptr;
  144. }
  145. }
  146. unsigned char *load_model(const char *filename, int *model_size)
  147. {
  148. FILE *fp;
  149. unsigned char *data;
  150. fp = fopen(filename, "rb");
  151. if (NULL == fp)
  152. {
  153. printf("Open file %s failed.\n", filename);
  154. return NULL;
  155. }
  156. fseek(fp, 0, SEEK_END);
  157. int size = ftell(fp);
  158. data = load_data(fp, 0, size);
  159. fclose(fp);
  160. *model_size = size;
  161. return data;
  162. }