RKNNManager.cpp 5.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203
  1. #include "beforeProcess.h"
  2. #include "RKNNManager.hpp"
  3. #include "RgaUtils.h"
  4. #include "im2d.h"
  5. #include "postprocess.h"
  6. #include <dlfcn.h>
  7. #include <sys/time.h>
  8. #include <exception>
  9. #include <iostream>
  10. RKNNManager::RKNNManager() : ctx(0), model_data(nullptr), model_data_size(0), resize_buf(nullptr) {}
  11. RKNNManager::~RKNNManager()
  12. {
  13. release();
  14. }
  15. bool RKNNManager::initialize(const std::string &model_path)
  16. {
  17. model_data = load_model(model_path.c_str(), &model_data_size);
  18. if (!model_data)
  19. return false;
  20. int ret = rknn_init(&ctx, model_data, model_data_size, 0, NULL);
  21. if (ret < 0)
  22. {
  23. std::cerr << "rknn_init error! ret=" << ret << std::endl;
  24. return false;
  25. }
  26. ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num));
  27. if (ret < 0)
  28. {
  29. std::cerr << "rknn_query error! ret=" << ret << std::endl;
  30. return false;
  31. }
  32. memset(input_attrs, 0, sizeof(input_attrs));
  33. for (int i = 0; i < io_num.n_input; i++)
  34. {
  35. input_attrs[i].index = i;
  36. ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]), sizeof(rknn_tensor_attr));
  37. if (ret < 0)
  38. {
  39. std::cerr << "rknn_query error! ret=" << ret << std::endl;
  40. return false;
  41. }
  42. }
  43. memset(output_attrs, 0, sizeof(output_attrs));
  44. for (int i = 0; i < io_num.n_output; i++)
  45. {
  46. output_attrs[i].index = i;
  47. ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]), sizeof(rknn_tensor_attr));
  48. if (ret < 0)
  49. return false;
  50. }
  51. if (input_attrs[0].fmt == RKNN_TENSOR_NCHW)
  52. {
  53. channel = input_attrs[0].dims[1];
  54. height = input_attrs[0].dims[2];
  55. width = input_attrs[0].dims[3];
  56. }
  57. else
  58. {
  59. height = input_attrs[0].dims[1];
  60. width = input_attrs[0].dims[2];
  61. channel = input_attrs[0].dims[3];
  62. }
  63. return true;
  64. }
  65. /// @brief 用于给输入图像进行推理
  66. /// @param input_image 输入图像的格式为BGR
  67. /// @param output_image 直接将结果绘制到输出图像
  68. /// @return 返回
  69. bool RKNNManager::infer(const cv::Mat &input_image, cv::Mat &output_image)
  70. {
  71. cv::Mat img;
  72. cv::cvtColor(input_image, img, cv::COLOR_BGR2RGB);
  73. rknn_input inputs[1];
  74. memset(inputs, 0, sizeof(inputs));
  75. inputs[0].index = 0;
  76. inputs[0].type = RKNN_TENSOR_UINT8;
  77. inputs[0].size = width * height * channel;
  78. inputs[0].fmt = RKNN_TENSOR_NHWC;
  79. inputs[0].pass_through = 0;
  80. if (img.cols != width || img.rows != height)
  81. {
  82. resize_buf = malloc(height * width * channel);
  83. memset(resize_buf, 0x00, height * width * channel);
  84. rga_buffer_t src = wrapbuffer_virtualaddr((void *)img.data, img.cols, img.rows, RK_FORMAT_RGB_888);
  85. rga_buffer_t dst = wrapbuffer_virtualaddr((void *)resize_buf, width, height, RK_FORMAT_RGB_888);
  86. im_rect src_rect, dst_rect;
  87. IM_STATUS status = imresize(src, dst);
  88. if (status != IM_STATUS_SUCCESS)
  89. return false;
  90. inputs[0].buf = resize_buf;
  91. }
  92. else
  93. {
  94. inputs[0].buf = (void *)img.data;
  95. }
  96. int ret = rknn_inputs_set(ctx, io_num.n_input, inputs);
  97. if (ret < 0)
  98. return false;
  99. rknn_output outputs[io_num.n_output];
  100. memset(outputs, 0, sizeof(outputs));
  101. for (int i = 0; i < io_num.n_output; i++)
  102. {
  103. outputs[i].want_float = 0;
  104. }
  105. ret = rknn_run(ctx, NULL);
  106. if (ret < 0)
  107. return false;
  108. ret = rknn_outputs_get(ctx, io_num.n_output, outputs, NULL);
  109. if (ret < 0)
  110. return false;
  111. float scale_w = (float)width / img.cols;
  112. float scale_h = (float)height / img.rows;
  113. detect_result_group_t detect_result_group;
  114. std::vector<float> out_scales;
  115. std::vector<int32_t> out_zps;
  116. for (int i = 0; i < io_num.n_output; ++i)
  117. {
  118. out_scales.push_back(output_attrs[i].scale);
  119. out_zps.push_back(output_attrs[i].zp);
  120. }
  121. post_process((int8_t *)outputs[0].buf, (int8_t *)outputs[1].buf, (int8_t *)outputs[2].buf, height, width,
  122. BOX_THRESH, NMS_THRESH, scale_w, scale_h, out_zps, out_scales, &detect_result_group);
  123. output_image = input_image.clone();
  124. char text[256];
  125. for (int i = 0; i < detect_result_group.count; i++)
  126. {
  127. detect_result_t *det_result = &(detect_result_group.results[i]);
  128. sprintf(text, "%s %.1f%%", det_result->name, det_result->prop * 100);
  129. int x1 = det_result->box.left;
  130. int y1 = det_result->box.top;
  131. int x2 = det_result->box.right;
  132. int y2 = det_result->box.bottom;
  133. rectangle(output_image, cv::Point(x1, y1), cv::Point(x2, y2), cv::Scalar(255, 0, 0, 255), 3);
  134. putText(output_image, text, cv::Point(x1, y1 + 12), cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0));
  135. }
  136. rknn_outputs_release(ctx, io_num.n_output, outputs);
  137. return true;
  138. }
  139. void RKNNManager::release()
  140. {
  141. if (ctx)
  142. {
  143. rknn_destroy(ctx);
  144. ctx = 0;
  145. }
  146. if (model_data)
  147. {
  148. free(model_data);
  149. model_data = nullptr;
  150. }
  151. if (resize_buf)
  152. {
  153. free(resize_buf);
  154. resize_buf = nullptr;
  155. }
  156. }
  157. unsigned char *load_model(const char *filename, int *model_size)
  158. {
  159. FILE *fp;
  160. unsigned char *data;
  161. fp = fopen(filename, "rb");
  162. if (NULL == fp)
  163. {
  164. printf("Open file %s failed.\n", filename);
  165. return NULL;
  166. }
  167. fseek(fp, 0, SEEK_END);
  168. int size = ftell(fp);
  169. data = load_data(fp, 0, size);
  170. fclose(fp);
  171. *model_size = size;
  172. return data;
  173. }