123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181 |
- #include "beforeProcess.h"
- #include "PPYOLOE.hpp"
- #include "RgaUtils.h"
- #include "im2d.h"
- #include "postprocess.h"
- #include <dlfcn.h>
- #include <sys/time.h>
- #include <exception>
- #include <iostream>
- PPYOLOE::PPYOLOE() : ctx(0), model_data(nullptr), model_data_size(0), resize_buf(nullptr) {}
- PPYOLOE::~PPYOLOE()
- {
- release();
- }
- bool PPYOLOE::initialize(const std::string &model_path)
- {
- static int index_flag = 0;
- model_data = load_model(model_path.c_str(), &model_data_size);
- if (!model_data)
- {
- std::cerr << "read model failed!" << std::endl;
- return false;
- }
- int ret = rknn_init(&ctx, model_data, model_data_size, 0, NULL);
- if (ret < 0)
- {
- std::cerr << "rknn_init error! ret=" << ret << std::endl;
- return false;
- }
- // 获取模型输入输出数量
- ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num));
- if (ret != RKNN_SUCC)
- {
- std::cerr << "rknn_query error! ret=" << ret << std::endl;
- return false;
- }
- // 获取模型输入属性
- input_attrs = new rknn_tensor_attr[io_num.n_input];
- memset(input_attrs, 0, sizeof(input_attrs));
- for (int i = 0; i < io_num.n_input; i++)
- {
- input_attrs[i].index = i;
- ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]), sizeof(rknn_tensor_attr));
- if (ret < 0)
- {
- std::cerr << "rknn_query error! ret=" << ret << std::endl;
- return false;
- }
- }
- // 获取模型输出属性
- output_attrs = new rknn_tensor_attr[io_num.n_output];
- memset(output_attrs, 0, sizeof(output_attrs));
- for (int i = 0; i < io_num.n_output; i++)
- {
- output_attrs[i].index = i;
- ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]), sizeof(rknn_tensor_attr));
- if (ret < RKNN_SUCC)
- {
- return false;
- }
- }
- if (output_attrs[0].qnt_type == RKNN_TENSOR_QNT_AFFINE_ASYMMETRIC && output_attrs[0].type == RKNN_TENSOR_INT8)
- {
- is_quant = true;
- }
- else
- {
- is_quant = false;
- }
- if (input_attrs[0].fmt == RKNN_TENSOR_NCHW)
- {
- channel = input_attrs[0].dims[1];
- height = input_attrs[0].dims[2];
- width = input_attrs[0].dims[3];
- }
- else
- {
- height = input_attrs[0].dims[1];
- width = input_attrs[0].dims[2];
- channel = input_attrs[0].dims[3];
- }
- return true;
- }
- /// @brief 用于给输入图像进行推理
- /// @param input_image 输入图像的格式为BGR
- /// @param output_image 直接将结果绘制到输出图像
- /// @return
- bool PPYOLOE::infer(int index, unsigned char *input_data, int input_width, int intput_height, DataPackage *result)
- {
- rknn_input inputs[io_num.n_input];
- rknn_output outputs[io_num.n_output];
- memset(inputs, 0, sizeof(inputs));
- memset(outputs, 0, sizeof(outputs));
- const float nms_threshold = 0.45; // 默认的NMS阈值
- const float box_conf_threshold = 0.3; // 默认的置信度阈值
- inputs[0].index = 0;
- inputs[0].type = RKNN_TENSOR_UINT8;
- inputs[0].size = width * height * channel;
- inputs[0].fmt = RKNN_TENSOR_NHWC;
- inputs[0].pass_through = 0;
- inputs[0].buf = (void *)input_data;
- int ret = rknn_inputs_set(ctx, io_num.n_input, inputs);
- if (ret < 0)
- {
- return false;
- }
- memset(outputs, 0, sizeof(outputs));
- for (int i = 0; i < io_num.n_output; i++)
- {
- outputs[i].want_float = 0;
- }
- ret = rknn_run(ctx, NULL);
- if (ret < 0)
- {
- return false;
- }
- ret = rknn_outputs_get(ctx, io_num.n_output, outputs, NULL);
- if (ret < 0)
- {
- return false;
- }
- post_process(this, outputs, box_conf_threshold, nms_threshold, &result->Result, 1);
- rknn_outputs_release(ctx, io_num.n_output, outputs);
- return true;
- }
- void PPYOLOE::release()
- {
- if (ctx)
- {
- rknn_destroy(ctx);
- ctx = 0;
- }
- if (model_data)
- {
- free(model_data);
- model_data = nullptr;
- }
- if (resize_buf)
- {
- free(resize_buf);
- resize_buf = nullptr;
- }
- }
- unsigned char *load_model(const char *filename, int *model_size)
- {
- FILE *fp;
- unsigned char *data;
- fp = fopen(filename, "rb");
- if (NULL == fp)
- {
- printf("Open file %s failed.\n", filename);
- return NULL;
- }
- fseek(fp, 0, SEEK_END);
- int size = ftell(fp);
- data = load_data(fp, 0, size);
- fclose(fp);
- *model_size = size;
- return data;
- }
|