PPYOLOE.cpp 4.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181
  1. #include "beforeProcess.h"
  2. #include "PPYOLOE.hpp"
  3. #include "RgaUtils.h"
  4. #include "im2d.h"
  5. #include "postprocess.h"
  6. #include <dlfcn.h>
  7. #include <sys/time.h>
  8. #include <exception>
  9. #include <iostream>
  10. PPYOLOE::PPYOLOE() : ctx(0), model_data(nullptr), model_data_size(0), resize_buf(nullptr) {}
  11. PPYOLOE::~PPYOLOE()
  12. {
  13. release();
  14. }
  15. bool PPYOLOE::initialize(const std::string &model_path)
  16. {
  17. static int index_flag = 0;
  18. model_data = load_model(model_path.c_str(), &model_data_size);
  19. if (!model_data)
  20. {
  21. std::cerr << "read model failed!" << std::endl;
  22. return false;
  23. }
  24. int ret = rknn_init(&ctx, model_data, model_data_size, 0, NULL);
  25. if (ret < 0)
  26. {
  27. std::cerr << "rknn_init error! ret=" << ret << std::endl;
  28. return false;
  29. }
  30. // 获取模型输入输出数量
  31. ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num));
  32. if (ret != RKNN_SUCC)
  33. {
  34. std::cerr << "rknn_query error! ret=" << ret << std::endl;
  35. return false;
  36. }
  37. // 获取模型输入属性
  38. input_attrs = new rknn_tensor_attr[io_num.n_input];
  39. memset(input_attrs, 0, sizeof(input_attrs));
  40. for (int i = 0; i < io_num.n_input; i++)
  41. {
  42. input_attrs[i].index = i;
  43. ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]), sizeof(rknn_tensor_attr));
  44. if (ret < 0)
  45. {
  46. std::cerr << "rknn_query error! ret=" << ret << std::endl;
  47. return false;
  48. }
  49. }
  50. // 获取模型输出属性
  51. output_attrs = new rknn_tensor_attr[io_num.n_output];
  52. memset(output_attrs, 0, sizeof(output_attrs));
  53. for (int i = 0; i < io_num.n_output; i++)
  54. {
  55. output_attrs[i].index = i;
  56. ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]), sizeof(rknn_tensor_attr));
  57. if (ret < RKNN_SUCC)
  58. {
  59. return false;
  60. }
  61. }
  62. if (output_attrs[0].qnt_type == RKNN_TENSOR_QNT_AFFINE_ASYMMETRIC && output_attrs[0].type == RKNN_TENSOR_INT8)
  63. {
  64. is_quant = true;
  65. }
  66. else
  67. {
  68. is_quant = false;
  69. }
  70. if (input_attrs[0].fmt == RKNN_TENSOR_NCHW)
  71. {
  72. channel = input_attrs[0].dims[1];
  73. height = input_attrs[0].dims[2];
  74. width = input_attrs[0].dims[3];
  75. }
  76. else
  77. {
  78. height = input_attrs[0].dims[1];
  79. width = input_attrs[0].dims[2];
  80. channel = input_attrs[0].dims[3];
  81. }
  82. return true;
  83. }
  84. /// @brief 用于给输入图像进行推理
  85. /// @param input_image 输入图像的格式为BGR
  86. /// @param output_image 直接将结果绘制到输出图像
  87. /// @return
  88. bool PPYOLOE::infer(int index, unsigned char *input_data, int input_width, int intput_height, DataPackage *result)
  89. {
  90. rknn_input inputs[io_num.n_input];
  91. rknn_output outputs[io_num.n_output];
  92. memset(inputs, 0, sizeof(inputs));
  93. memset(outputs, 0, sizeof(outputs));
  94. const float nms_threshold = 0.45; // 默认的NMS阈值
  95. const float box_conf_threshold = 0.3; // 默认的置信度阈值
  96. inputs[0].index = 0;
  97. inputs[0].type = RKNN_TENSOR_UINT8;
  98. inputs[0].size = width * height * channel;
  99. inputs[0].fmt = RKNN_TENSOR_NHWC;
  100. inputs[0].pass_through = 0;
  101. inputs[0].buf = (void *)input_data;
  102. int ret = rknn_inputs_set(ctx, io_num.n_input, inputs);
  103. if (ret < 0)
  104. {
  105. return false;
  106. }
  107. memset(outputs, 0, sizeof(outputs));
  108. for (int i = 0; i < io_num.n_output; i++)
  109. {
  110. outputs[i].want_float = 0;
  111. }
  112. ret = rknn_run(ctx, NULL);
  113. if (ret < 0)
  114. {
  115. return false;
  116. }
  117. ret = rknn_outputs_get(ctx, io_num.n_output, outputs, NULL);
  118. if (ret < 0)
  119. {
  120. return false;
  121. }
  122. post_process(this, outputs, box_conf_threshold, nms_threshold, &result->Result, 1);
  123. rknn_outputs_release(ctx, io_num.n_output, outputs);
  124. return true;
  125. }
  126. void PPYOLOE::release()
  127. {
  128. if (ctx)
  129. {
  130. rknn_destroy(ctx);
  131. ctx = 0;
  132. }
  133. if (model_data)
  134. {
  135. free(model_data);
  136. model_data = nullptr;
  137. }
  138. if (resize_buf)
  139. {
  140. free(resize_buf);
  141. resize_buf = nullptr;
  142. }
  143. }
  144. unsigned char *load_model(const char *filename, int *model_size)
  145. {
  146. FILE *fp;
  147. unsigned char *data;
  148. fp = fopen(filename, "rb");
  149. if (NULL == fp)
  150. {
  151. printf("Open file %s failed.\n", filename);
  152. return NULL;
  153. }
  154. fseek(fp, 0, SEEK_END);
  155. int size = ftell(fp);
  156. data = load_data(fp, 0, size);
  157. fclose(fp);
  158. *model_size = size;
  159. return data;
  160. }