123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555 |
- // Copyright (c) 2021 by Rockchip Electronics Co., Ltd. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include <math.h>
- #include <stdint.h>
- #include <stdio.h>
- #include <stdlib.h>
- #include <string.h>
- #include <sys/time.h>
- #include "postprocess.h"
- #include <set>
- #include <vector>
- inline static int clamp(float val, int min, int max) { return val > min ? (val < max ? val : max) : min; }
- static char *readLine(FILE *fp, char *buffer, int *len)
- {
- int ch;
- int i = 0;
- size_t buff_len = 0;
- buffer = (char *)malloc(buff_len + 1);
- if (!buffer)
- return NULL; // Out of memory
- while ((ch = fgetc(fp)) != '\n' && ch != EOF)
- {
- buff_len++;
- void *tmp = realloc(buffer, buff_len + 1);
- if (tmp == NULL)
- {
- free(buffer);
- return NULL; // Out of memory
- }
- buffer = (char *)tmp;
- buffer[i] = (char)ch;
- i++;
- }
- buffer[i] = '\0';
- *len = buff_len;
- // Detect end
- if (ch == EOF && (i == 0 || ferror(fp)))
- {
- free(buffer);
- return NULL;
- }
- return buffer;
- }
- static int readLines(const char *fileName, char *lines[], int max_line)
- {
- FILE *file = fopen(fileName, "r");
- char *s;
- int i = 0;
- int n = 0;
- if (file == NULL)
- {
- printf("Open %s fail!\n", fileName);
- return -1;
- }
- while ((s = readLine(file, s, &n)) != NULL)
- {
- lines[i++] = s;
- if (i >= max_line)
- break;
- }
- fclose(file);
- return i;
- }
- static float CalculateOverlap(float xmin0, float ymin0, float xmax0, float ymax0, float xmin1, float ymin1, float xmax1,
- float ymax1)
- {
- float w = fmax(0.f, fmin(xmax0, xmax1) - fmax(xmin0, xmin1) + 1.0);
- float h = fmax(0.f, fmin(ymax0, ymax1) - fmax(ymin0, ymin1) + 1.0);
- float i = w * h;
- float u = (xmax0 - xmin0 + 1.0) * (ymax0 - ymin0 + 1.0) + (xmax1 - xmin1 + 1.0) * (ymax1 - ymin1 + 1.0) - i;
- return u <= 0.f ? 0.f : (i / u);
- }
- static int nms(int validCount, std::vector<float> &outputLocations, std::vector<int> classIds, std::vector<int> &order,
- int filterId, float threshold)
- {
- for (int i = 0; i < validCount; ++i)
- {
- if (order[i] == -1 || classIds[i] != filterId)
- {
- continue;
- }
- int n = order[i];
- for (int j = i + 1; j < validCount; ++j)
- {
- int m = order[j];
- if (m == -1 || classIds[i] != filterId)
- {
- continue;
- }
- float xmin0 = outputLocations[n * 4 + 0];
- float ymin0 = outputLocations[n * 4 + 1];
- float xmax0 = outputLocations[n * 4 + 0] + outputLocations[n * 4 + 2];
- float ymax0 = outputLocations[n * 4 + 1] + outputLocations[n * 4 + 3];
- float xmin1 = outputLocations[m * 4 + 0];
- float ymin1 = outputLocations[m * 4 + 1];
- float xmax1 = outputLocations[m * 4 + 0] + outputLocations[m * 4 + 2];
- float ymax1 = outputLocations[m * 4 + 1] + outputLocations[m * 4 + 3];
- float iou = CalculateOverlap(xmin0, ymin0, xmax0, ymax0, xmin1, ymin1, xmax1, ymax1);
- if (iou > threshold)
- {
- order[j] = -1;
- }
- }
- }
- return 0;
- }
- static int quick_sort_indice_inverse(std::vector<float> &input, int left, int right, std::vector<int> &indices)
- {
- float key;
- int key_index;
- int low = left;
- int high = right;
- if (left < right)
- {
- key_index = indices[left];
- key = input[left];
- while (low < high)
- {
- while (low < high && input[high] <= key)
- {
- high--;
- }
- input[low] = input[high];
- indices[low] = indices[high];
- while (low < high && input[low] >= key)
- {
- low++;
- }
- input[high] = input[low];
- indices[high] = indices[low];
- }
- input[low] = key;
- indices[low] = key_index;
- quick_sort_indice_inverse(input, left, low - 1, indices);
- quick_sort_indice_inverse(input, low + 1, right, indices);
- }
- return low;
- }
- static float sigmoid(float x) { return 1.0 / (1.0 + expf(-x)); }
- static float unsigmoid(float y) { return -1.0 * logf((1.0 / y) - 1.0); }
- inline static int32_t __clip(float val, float min, float max)
- {
- float f = val <= min ? min : (val >= max ? max : val);
- return f;
- }
- static int8_t qnt_f32_to_affine(float f32, int32_t zp, float scale)
- {
- float dst_val = (f32 / scale) + zp;
- int8_t res = (int8_t)__clip(dst_val, -128, 127);
- return res;
- }
- static uint8_t qnt_f32_to_affine_u8(float f32, int32_t zp, float scale)
- {
- float dst_val = (f32 / scale) + zp;
- uint8_t res = (uint8_t)__clip(dst_val, 0, 255);
- return res;
- }
- static float deqnt_affine_to_f32(int8_t qnt, int32_t zp, float scale) { return ((float)qnt - (float)zp) * scale; }
- static float deqnt_affine_u8_to_f32(uint8_t qnt, int32_t zp, float scale) { return ((float)qnt - (float)zp) * scale; }
- static void compute_dfl(float *tensor, int dfl_len, float *box)
- {
- for (int b = 0; b < 4; b++)
- {
- float exp_t[dfl_len];
- float exp_sum = 0;
- float acc_sum = 0;
- for (int i = 0; i < dfl_len; i++)
- {
- exp_t[i] = exp(tensor[i + b * dfl_len]);
- exp_sum += exp_t[i];
- }
- for (int i = 0; i < dfl_len; i++)
- {
- acc_sum += exp_t[i] / exp_sum * i;
- }
- box[b] = acc_sum;
- }
- }
- static int process_u8(uint8_t *box_tensor, int32_t box_zp, float box_scale,
- uint8_t *score_tensor, int32_t score_zp, float score_scale,
- uint8_t *score_sum_tensor, int32_t score_sum_zp, float score_sum_scale,
- int grid_h, int grid_w, int stride, int dfl_len,
- std::vector<float> &boxes,
- std::vector<float> &objProbs,
- std::vector<int> &classId,
- float threshold, int OBJ_CLASS_NUM)
- {
- int validCount = 0;
- int grid_len = grid_h * grid_w;
- uint8_t score_thres_u8 = qnt_f32_to_affine_u8(threshold, score_zp, score_scale);
- uint8_t score_sum_thres_u8 = qnt_f32_to_affine_u8(threshold, score_sum_zp, score_sum_scale);
- for (int i = 0; i < grid_h; i++)
- {
- for (int j = 0; j < grid_w; j++)
- {
- int offset = i * grid_w + j;
- int max_class_id = -1;
- // Use score sum to quickly filter
- if (score_sum_tensor != nullptr)
- {
- if (score_sum_tensor[offset] < score_sum_thres_u8)
- {
- continue;
- }
- }
- uint8_t max_score = -score_zp;
- for (int c = 0; c < OBJ_CLASS_NUM; c++)
- {
- if ((score_tensor[offset] > score_thres_u8) && (score_tensor[offset] > max_score))
- {
- max_score = score_tensor[offset];
- max_class_id = c;
- }
- offset += grid_len;
- }
- // compute box
- if (max_score > score_thres_u8)
- {
- offset = i * grid_w + j;
- float box[4];
- float before_dfl[dfl_len * 4];
- for (int k = 0; k < dfl_len * 4; k++)
- {
- before_dfl[k] = deqnt_affine_u8_to_f32(box_tensor[offset], box_zp, box_scale);
- offset += grid_len;
- }
- compute_dfl(before_dfl, dfl_len, box);
- float x1, y1, x2, y2, w, h;
- x1 = (-box[0] + j + 0.5) * stride;
- y1 = (-box[1] + i + 0.5) * stride;
- x2 = (box[2] + j + 0.5) * stride;
- y2 = (box[3] + i + 0.5) * stride;
- w = x2 - x1;
- h = y2 - y1;
- boxes.push_back(x1);
- boxes.push_back(y1);
- boxes.push_back(w);
- boxes.push_back(h);
- objProbs.push_back(deqnt_affine_u8_to_f32(max_score, score_zp, score_scale));
- classId.push_back(max_class_id);
- validCount++;
- }
- }
- }
- return validCount;
- }
- static int process_i8(int8_t *box_tensor, int32_t box_zp, float box_scale,
- int8_t *score_tensor, int32_t score_zp, float score_scale,
- int8_t *score_sum_tensor, int32_t score_sum_zp, float score_sum_scale,
- int grid_h, int grid_w, int stride, int dfl_len,
- std::vector<float> &boxes,
- std::vector<float> &objProbs,
- std::vector<int> &classId,
- float threshold, int OBJ_CLASS_NUM)
- {
- int validCount = 0;
- int grid_len = grid_h * grid_w;
- int8_t score_thres_i8 = qnt_f32_to_affine(threshold, score_zp, score_scale);
- int8_t score_sum_thres_i8 = qnt_f32_to_affine(threshold, score_sum_zp, score_sum_scale);
- for (int i = 0; i < grid_h; i++)
- {
- for (int j = 0; j < grid_w; j++)
- {
- int offset = i * grid_w + j;
- int max_class_id = -1;
- // 通过 score sum 起到快速过滤的作用
- if (score_sum_tensor != nullptr)
- {
- if (score_sum_tensor[offset] < score_sum_thres_i8)
- {
- continue;
- }
- }
- int8_t max_score = -score_zp;
- for (int c = 0; c < OBJ_CLASS_NUM; c++)
- {
- if ((score_tensor[offset] > score_thres_i8) && (score_tensor[offset] > max_score))
- {
- max_score = score_tensor[offset];
- max_class_id = c;
- }
- offset += grid_len;
- }
- // compute box
- if (max_score > score_thres_i8)
- {
- offset = i * grid_w + j;
- float box[4];
- float before_dfl[dfl_len * 4];
- for (int k = 0; k < dfl_len * 4; k++)
- {
- before_dfl[k] = deqnt_affine_to_f32(box_tensor[offset], box_zp, box_scale);
- offset += grid_len;
- }
- compute_dfl(before_dfl, dfl_len, box);
- float x1, y1, x2, y2, w, h;
- x1 = (-box[0] + j + 0.5) * stride;
- y1 = (-box[1] + i + 0.5) * stride;
- x2 = (box[2] + j + 0.5) * stride;
- y2 = (box[3] + i + 0.5) * stride;
- w = x2 - x1;
- h = y2 - y1;
- boxes.push_back(x1);
- boxes.push_back(y1);
- boxes.push_back(w);
- boxes.push_back(h);
- objProbs.push_back(deqnt_affine_to_f32(max_score, score_zp, score_scale));
- classId.push_back(max_class_id);
- validCount++;
- }
- }
- }
- return validCount;
- }
- static int process_fp32(float *box_tensor, float *score_tensor, float *score_sum_tensor,
- int grid_h, int grid_w, int stride, int dfl_len,
- std::vector<float> &boxes,
- std::vector<float> &objProbs,
- std::vector<int> &classId,
- float threshold, int OBJ_CLASS_NUM)
- {
- int validCount = 0;
- int grid_len = grid_h * grid_w;
- for (int i = 0; i < grid_h; i++)
- {
- for (int j = 0; j < grid_w; j++)
- {
- int offset = i * grid_w + j;
- int max_class_id = -1;
- // 通过 score sum 起到快速过滤的作用
- if (score_sum_tensor != nullptr)
- {
- if (score_sum_tensor[offset] < threshold)
- {
- continue;
- }
- }
- float max_score = 0;
- for (int c = 0; c < OBJ_CLASS_NUM; c++)
- {
- if ((score_tensor[offset] > threshold) && (score_tensor[offset] > max_score))
- {
- max_score = score_tensor[offset];
- max_class_id = c;
- }
- offset += grid_len;
- }
- // compute box
- if (max_score > threshold)
- {
- offset = i * grid_w + j;
- float box[4];
- float before_dfl[dfl_len * 4];
- for (int k = 0; k < dfl_len * 4; k++)
- {
- before_dfl[k] = box_tensor[offset];
- offset += grid_len;
- }
- compute_dfl(before_dfl, dfl_len, box);
- float x1, y1, x2, y2, w, h;
- x1 = (-box[0] + j + 0.5) * stride;
- y1 = (-box[1] + i + 0.5) * stride;
- x2 = (box[2] + j + 0.5) * stride;
- y2 = (box[3] + i + 0.5) * stride;
- w = x2 - x1;
- h = y2 - y1;
- boxes.push_back(x1);
- boxes.push_back(y1);
- boxes.push_back(w);
- boxes.push_back(h);
- objProbs.push_back(max_score);
- classId.push_back(max_class_id);
- validCount++;
- }
- }
- }
- return validCount;
- }
- int post_process(PPYOLOE *app_ctx, rknn_output *outputs, float conf_threshold, float nms_threshold, object_detect_result_list *od_results, int OBJ_CLASS_NUM)
- {
- std::vector<float> filterBoxes;
- std::vector<float> objProbs;
- std::vector<int> classId;
- int validCount = 0;
- int stride = 0;
- int grid_h = 0;
- int grid_w = 0;
- int model_in_w = app_ctx->width;
- int model_in_h = app_ctx->height;
- memset(od_results, 0, sizeof(object_detect_result_list));
- // default 3 branch
- #ifdef RKNPU1
- int dfl_len = app_ctx->output_attrs[0].dims[2] / 4;
- #else
- int dfl_len = app_ctx->output_attrs[0].dims[1] / 4;
- #endif
- int output_per_branch = app_ctx->io_num.n_output / 3;
- for (int i = 0; i < 3; i++)
- {
- void *score_sum = nullptr;
- int32_t score_sum_zp = 0;
- float score_sum_scale = 1.0;
- if (output_per_branch == 3)
- {
- score_sum = outputs[i * output_per_branch + 2].buf;
- score_sum_zp = app_ctx->output_attrs[i * output_per_branch + 2].zp;
- score_sum_scale = app_ctx->output_attrs[i * output_per_branch + 2].scale;
- }
- int box_idx = i * output_per_branch;
- int score_idx = i * output_per_branch + 1;
- #ifdef RKNPU1
- grid_h = app_ctx->output_attrs[box_idx].dims[1];
- grid_w = app_ctx->output_attrs[box_idx].dims[0];
- #else
- grid_h = app_ctx->output_attrs[box_idx].dims[2];
- grid_w = app_ctx->output_attrs[box_idx].dims[3];
- #endif
- stride = model_in_h / grid_h;
- if (app_ctx->is_quant)
- {
- #ifdef RKNPU1
- validCount += process_u8((uint8_t *)outputs[box_idx].buf, app_ctx->output_attrs[box_idx].zp, app_ctx->output_attrs[box_idx].scale,
- (uint8_t *)outputs[score_idx].buf, app_ctx->output_attrs[score_idx].zp, app_ctx->output_attrs[score_idx].scale,
- (uint8_t *)score_sum, score_sum_zp, score_sum_scale,
- grid_h, grid_w, stride, dfl_len,
- filterBoxes, objProbs, classId, conf_threshold);
- #else
- validCount += process_i8((int8_t *)outputs[box_idx].buf, app_ctx->output_attrs[box_idx].zp, app_ctx->output_attrs[box_idx].scale,
- (int8_t *)outputs[score_idx].buf, app_ctx->output_attrs[score_idx].zp, app_ctx->output_attrs[score_idx].scale,
- (int8_t *)score_sum, score_sum_zp, score_sum_scale,
- grid_h, grid_w, stride, dfl_len,
- filterBoxes, objProbs, classId, conf_threshold, OBJ_CLASS_NUM);
- #endif
- }
- else
- {
- validCount += process_fp32((float *)outputs[box_idx].buf, (float *)outputs[score_idx].buf, (float *)score_sum,
- grid_h, grid_w, stride, dfl_len,
- filterBoxes, objProbs, classId, conf_threshold, OBJ_CLASS_NUM);
- }
- }
- // no object detect
- if (validCount <= 0)
- {
- return 0;
- }
- std::vector<int> indexArray;
- for (int i = 0; i < validCount; ++i)
- {
- indexArray.push_back(i);
- }
- quick_sort_indice_inverse(objProbs, 0, validCount - 1, indexArray);
- std::set<int> class_set(std::begin(classId), std::end(classId));
- for (auto c : class_set)
- {
- nms(validCount, filterBoxes, classId, indexArray, c, nms_threshold);
- }
- int last_count = 0;
- od_results->count = 0;
- /* box valid detect target */
- for (int i = 0; i < validCount; ++i)
- {
- if (indexArray[i] == -1 || last_count >= 128)
- {
- continue;
- }
- int n = indexArray[i];
- float x1 = filterBoxes[n * 4 + 0];
- float y1 = filterBoxes[n * 4 + 1];
- float x2 = x1 + filterBoxes[n * 4 + 2];
- float y2 = y1 + filterBoxes[n * 4 + 3];
- int id = classId[n];
- float obj_conf = objProbs[i];
- od_results->results[last_count].box.left = (int)(clamp(x1, 0, model_in_w));
- od_results->results[last_count].box.top = (int)(clamp(y1, 0, model_in_h));
- od_results->results[last_count].box.right = (int)(clamp(x2, 0, model_in_w));
- od_results->results[last_count].box.bottom = (int)(clamp(y2, 0, model_in_h));
- od_results->results[last_count].prop = obj_conf;
- od_results->results[last_count].cls_id = id;
- last_count++;
- }
- od_results->count = last_count;
- return 0;
- }
|