/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #pragma once #ifndef OPENCV_CUDEV_BLOCK_SCAN_HPP #define OPENCV_CUDEV_BLOCK_SCAN_HPP #include "../common.hpp" #include "../warp/scan.hpp" #include "../warp/warp.hpp" namespace cv { namespace cudev { //! @addtogroup cudev //! @{ #if __CUDACC_VER_MAJOR__ >= 9 // Usage Note // - THREADS_NUM should be equal to the number of threads in this block. // - smem must be able to contain at least n elements of type T, where n is equal to the number // of warps in this block. The number can be calculated by divUp(THREADS_NUM, WARP_SIZE). // // Dev Note // - Starting from CUDA 9.0, support for Fermi is dropped. So CV_CUDEV_ARCH >= 300 is implied. // - "For Pascal and earlier architectures (CV_CUDEV_ARCH < 700), all threads in mask must execute // the same warp intrinsic instruction in convergence, and the union of all values in mask must // be equal to the warp's active mask." // (https://docs.nvidia.com/cuda/archive/10.0/cuda-c-programming-guide#independent-thread-scheduling-7-x) // - Above restriction does not apply starting from Volta (CV_CUDEV_ARCH >= 700). We just need to // take care so that "all non-exited threads named in mask must execute the same intrinsic with // the same mask." // (https://docs.nvidia.com/cuda/archive/10.0/cuda-c-programming-guide#warp-description) template __device__ T blockScanInclusive(T data, volatile T* smem, uint tid) { const int residual = THREADS_NUM & (WARP_SIZE - 1); #if CV_CUDEV_ARCH < 700 const uint residual_mask = (1U << residual) - 1; #endif if (THREADS_NUM > WARP_SIZE) { // bottom-level inclusive warp scan #if CV_CUDEV_ARCH >= 700 T warpResult = warpScanInclusive(0xFFFFFFFFU, data); #else T warpResult; if (0 == residual) warpResult = warpScanInclusive(0xFFFFFFFFU, data); else { const int n_warps = divUp(THREADS_NUM, WARP_SIZE); const int warp_num = Warp::warpId(); if (warp_num < n_warps - 1) warpResult = warpScanInclusive(0xFFFFFFFFU, data); else { // We are at the last threads of a block whose number of threads // is not a multiple of the warp size warpResult = warpScanInclusive(residual_mask, data); } } #endif __syncthreads(); // save top elements of each warp for exclusive warp scan // sync to wait for warp scans to complete (because smem is being overwritten) if ((tid & (WARP_SIZE - 1)) == (WARP_SIZE - 1)) { smem[tid >> LOG_WARP_SIZE] = warpResult; } __syncthreads(); int quot = THREADS_NUM / WARP_SIZE; if (tid < quot) { // grab top warp elements T val = smem[tid]; uint mask = (1LLU << quot) - 1; if (0 == residual) { // calculate exclusive scan and write back to shared memory smem[tid] = warpScanExclusive(mask, val); } else { // Read from smem[tid] (T val = smem[tid]) // and write to smem[tid + 1] (smem[tid + 1] = warpScanInclusive(mask, val)) // should be explicitly fenced by "__syncwarp" to get rid of // "cuda-memcheck --tool racecheck" warnings. __syncwarp(mask); // calculate inclusive scan and write back to shared memory with offset 1 smem[tid + 1] = warpScanInclusive(mask, val); if (tid == 0) smem[0] = 0; } } __syncthreads(); // return updated warp scans return warpResult + smem[tid >> LOG_WARP_SIZE]; } else { #if CV_CUDEV_ARCH >= 700 return warpScanInclusive(0xFFFFFFFFU, data); #else if (THREADS_NUM == WARP_SIZE) return warpScanInclusive(0xFFFFFFFFU, data); else return warpScanInclusive(residual_mask, data); #endif } } template __device__ __forceinline__ T blockScanExclusive(T data, volatile T* smem, uint tid) { return blockScanInclusive(data, smem, tid) - data; } #else // __CUDACC_VER_MAJOR__ >= 9 // Usage Note // - THREADS_NUM should be equal to the number of threads in this block. // - (>= Kepler) smem must be able to contain at least n elements of type T, where n is equal to the number // of warps in this block. The number can be calculated by divUp(THREADS_NUM, WARP_SIZE). // - (Fermi) smem must be able to contain at least n elements of type T, where n is equal to the number // of threads in this block (= THREADS_NUM). template __device__ T blockScanInclusive(T data, volatile T* smem, uint tid) { if (THREADS_NUM > WARP_SIZE) { // bottom-level inclusive warp scan T warpResult = warpScanInclusive(data, smem, tid); __syncthreads(); // save top elements of each warp for exclusive warp scan // sync to wait for warp scans to complete (because s_Data is being overwritten) if ((tid & (WARP_SIZE - 1)) == (WARP_SIZE - 1)) { smem[tid >> LOG_WARP_SIZE] = warpResult; } __syncthreads(); int quot = THREADS_NUM / WARP_SIZE; T val; if (tid < quot) { // grab top warp elements val = smem[tid]; } __syncthreads(); if (tid < quot) { if (0 == (THREADS_NUM & (WARP_SIZE - 1))) { // calculate exclusive scan and write back to shared memory smem[tid] = warpScanExclusive(val, smem, tid); } else { // calculate inclusive scan and write back to shared memory with offset 1 smem[tid + 1] = warpScanInclusive(val, smem, tid); if (tid == 0) smem[0] = 0; } } __syncthreads(); // return updated warp scans return warpResult + smem[tid >> LOG_WARP_SIZE]; } else { return warpScanInclusive(data, smem, tid); } } template __device__ __forceinline__ T blockScanExclusive(T data, volatile T* smem, uint tid) { return blockScanInclusive(data, smem, tid) - data; } #endif // __CUDACC_VER_MAJOR__ >= 9 //! @} }} #endif