123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #ifndef OPENCV_CUDAIMGPROC_HPP
- #define OPENCV_CUDAIMGPROC_HPP
- #ifndef __cplusplus
- # error cudaimgproc.hpp header must be compiled as C++
- #endif
- #include "opencv2/core/cuda.hpp"
- #include "opencv2/imgproc.hpp"
- /**
- @addtogroup cuda
- @{
- @defgroup cudaimgproc Image Processing
- @{
- @defgroup cudaimgproc_color Color space processing
- @defgroup cudaimgproc_hist Histogram Calculation
- @defgroup cudaimgproc_hough Hough Transform
- @defgroup cudaimgproc_feature Feature Detection
- @}
- @}
- */
- namespace cv { namespace cuda {
- //! @addtogroup cudaimgproc
- //! @{
- /////////////////////////// Color Processing ///////////////////////////
- //! @addtogroup cudaimgproc_color
- //! @{
- /** @brief Converts an image from one color space to another.
- @param src Source image with CV_8U , CV_16U , or CV_32F depth and 1, 3, or 4 channels.
- @param dst Destination image.
- @param code Color space conversion code. For details, see cvtColor .
- @param dcn Number of channels in the destination image. If the parameter is 0, the number of the
- channels is derived automatically from src and the code .
- @param stream Stream for the asynchronous version.
- 3-channel color spaces (like HSV, XYZ, and so on) can be stored in a 4-channel image for better
- performance.
- @sa cvtColor
- */
- CV_EXPORTS void cvtColor(InputArray src, OutputArray dst, int code, int dcn = 0, Stream& stream = Stream::Null());
- enum DemosaicTypes
- {
- //! Bayer Demosaicing (Malvar, He, and Cutler)
- COLOR_BayerBG2BGR_MHT = 256,
- COLOR_BayerGB2BGR_MHT = 257,
- COLOR_BayerRG2BGR_MHT = 258,
- COLOR_BayerGR2BGR_MHT = 259,
- COLOR_BayerBG2RGB_MHT = COLOR_BayerRG2BGR_MHT,
- COLOR_BayerGB2RGB_MHT = COLOR_BayerGR2BGR_MHT,
- COLOR_BayerRG2RGB_MHT = COLOR_BayerBG2BGR_MHT,
- COLOR_BayerGR2RGB_MHT = COLOR_BayerGB2BGR_MHT,
- COLOR_BayerBG2GRAY_MHT = 260,
- COLOR_BayerGB2GRAY_MHT = 261,
- COLOR_BayerRG2GRAY_MHT = 262,
- COLOR_BayerGR2GRAY_MHT = 263
- };
- /** @brief Converts an image from Bayer pattern to RGB or grayscale.
- @param src Source image (8-bit or 16-bit single channel).
- @param dst Destination image.
- @param code Color space conversion code (see the description below).
- @param dcn Number of channels in the destination image. If the parameter is 0, the number of the
- channels is derived automatically from src and the code .
- @param stream Stream for the asynchronous version.
- The function can do the following transformations:
- - Demosaicing using bilinear interpolation
- > - COLOR_BayerBG2GRAY , COLOR_BayerGB2GRAY , COLOR_BayerRG2GRAY , COLOR_BayerGR2GRAY
- > - COLOR_BayerBG2BGR , COLOR_BayerGB2BGR , COLOR_BayerRG2BGR , COLOR_BayerGR2BGR
- - Demosaicing using Malvar-He-Cutler algorithm (@cite MHT2011)
- > - COLOR_BayerBG2GRAY_MHT , COLOR_BayerGB2GRAY_MHT , COLOR_BayerRG2GRAY_MHT ,
- > COLOR_BayerGR2GRAY_MHT
- > - COLOR_BayerBG2BGR_MHT , COLOR_BayerGB2BGR_MHT , COLOR_BayerRG2BGR_MHT ,
- > COLOR_BayerGR2BGR_MHT
- @sa cvtColor
- */
- CV_EXPORTS void demosaicing(InputArray src, OutputArray dst, int code, int dcn = -1, Stream& stream = Stream::Null());
- /** @brief Exchanges the color channels of an image in-place.
- @param image Source image. Supports only CV_8UC4 type.
- @param dstOrder Integer array describing how channel values are permutated. The n-th entry of the
- array contains the number of the channel that is stored in the n-th channel of the output image.
- E.g. Given an RGBA image, aDstOrder = [3,2,1,0] converts this to ABGR channel order.
- @param stream Stream for the asynchronous version.
- The methods support arbitrary permutations of the original channels, including replication.
- */
- CV_EXPORTS void swapChannels(InputOutputArray image, const int dstOrder[4], Stream& stream = Stream::Null());
- /** @brief Routines for correcting image color gamma.
- @param src Source image (3- or 4-channel 8 bit).
- @param dst Destination image.
- @param forward true for forward gamma correction or false for inverse gamma correction.
- @param stream Stream for the asynchronous version.
- */
- CV_EXPORTS void gammaCorrection(InputArray src, OutputArray dst, bool forward = true, Stream& stream = Stream::Null());
- enum AlphaCompTypes { ALPHA_OVER, ALPHA_IN, ALPHA_OUT, ALPHA_ATOP, ALPHA_XOR, ALPHA_PLUS, ALPHA_OVER_PREMUL, ALPHA_IN_PREMUL, ALPHA_OUT_PREMUL,
- ALPHA_ATOP_PREMUL, ALPHA_XOR_PREMUL, ALPHA_PLUS_PREMUL, ALPHA_PREMUL};
- /** @brief Composites two images using alpha opacity values contained in each image.
- @param img1 First image. Supports CV_8UC4 , CV_16UC4 , CV_32SC4 and CV_32FC4 types.
- @param img2 Second image. Must have the same size and the same type as img1 .
- @param dst Destination image.
- @param alpha_op Flag specifying the alpha-blending operation:
- - **ALPHA_OVER**
- - **ALPHA_IN**
- - **ALPHA_OUT**
- - **ALPHA_ATOP**
- - **ALPHA_XOR**
- - **ALPHA_PLUS**
- - **ALPHA_OVER_PREMUL**
- - **ALPHA_IN_PREMUL**
- - **ALPHA_OUT_PREMUL**
- - **ALPHA_ATOP_PREMUL**
- - **ALPHA_XOR_PREMUL**
- - **ALPHA_PLUS_PREMUL**
- - **ALPHA_PREMUL**
- @param stream Stream for the asynchronous version.
- @note
- - An example demonstrating the use of alphaComp can be found at
- opencv_source_code/samples/gpu/alpha_comp.cpp
- */
- CV_EXPORTS void alphaComp(InputArray img1, InputArray img2, OutputArray dst, int alpha_op, Stream& stream = Stream::Null());
- //! @} cudaimgproc_color
- ////////////////////////////// Histogram ///////////////////////////////
- //! @addtogroup cudaimgproc_hist
- //! @{
- /** @brief Calculates histogram for one channel 8-bit image.
- @param src Source image with CV_8UC1 type.
- @param hist Destination histogram with one row, 256 columns, and the CV_32SC1 type.
- @param stream Stream for the asynchronous version.
- */
- CV_EXPORTS void calcHist(InputArray src, OutputArray hist, Stream& stream = Stream::Null());
- /** @brief Calculates histogram for one channel 8-bit image confined in given mask.
- @param src Source image with CV_8UC1 type.
- @param hist Destination histogram with one row, 256 columns, and the CV_32SC1 type.
- @param mask A mask image same size as src and of type CV_8UC1.
- @param stream Stream for the asynchronous version.
- */
- CV_EXPORTS void calcHist(InputArray src, InputArray mask, OutputArray hist, Stream& stream = Stream::Null());
- /** @brief Equalizes the histogram of a grayscale image.
- @param src Source image with CV_8UC1 type.
- @param dst Destination image.
- @param stream Stream for the asynchronous version.
- @sa equalizeHist
- */
- CV_EXPORTS void equalizeHist(InputArray src, OutputArray dst, Stream& stream = Stream::Null());
- /** @brief Base class for Contrast Limited Adaptive Histogram Equalization. :
- */
- class CV_EXPORTS CLAHE : public cv::CLAHE
- {
- public:
- using cv::CLAHE::apply;
- /** @brief Equalizes the histogram of a grayscale image using Contrast Limited Adaptive Histogram Equalization.
- @param src Source image with CV_8UC1 type.
- @param dst Destination image.
- @param stream Stream for the asynchronous version.
- */
- virtual void apply(InputArray src, OutputArray dst, Stream& stream) = 0;
- };
- /** @brief Creates implementation for cuda::CLAHE .
- @param clipLimit Threshold for contrast limiting.
- @param tileGridSize Size of grid for histogram equalization. Input image will be divided into
- equally sized rectangular tiles. tileGridSize defines the number of tiles in row and column.
- */
- CV_EXPORTS Ptr<cuda::CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8));
- /** @brief Computes levels with even distribution.
- @param levels Destination array. levels has 1 row, nLevels columns, and the CV_32SC1 type.
- @param nLevels Number of computed levels. nLevels must be at least 2.
- @param lowerLevel Lower boundary value of the lowest level.
- @param upperLevel Upper boundary value of the greatest level.
- @param stream Stream for the asynchronous version.
- */
- CV_EXPORTS void evenLevels(OutputArray levels, int nLevels, int lowerLevel, int upperLevel, Stream& stream = Stream::Null());
- /** @brief Calculates a histogram with evenly distributed bins.
- @param src Source image. CV_8U, CV_16U, or CV_16S depth and 1 or 4 channels are supported. For
- a four-channel image, all channels are processed separately.
- @param hist Destination histogram with one row, histSize columns, and the CV_32S type.
- @param histSize Size of the histogram.
- @param lowerLevel Lower boundary of lowest-level bin.
- @param upperLevel Upper boundary of highest-level bin.
- @param stream Stream for the asynchronous version.
- */
- CV_EXPORTS void histEven(InputArray src, OutputArray hist, int histSize, int lowerLevel, int upperLevel, Stream& stream = Stream::Null());
- /** @overload */
- CV_EXPORTS void histEven(InputArray src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream = Stream::Null());
- /** @brief Calculates a histogram with bins determined by the levels array.
- @param src Source image. CV_8U , CV_16U , or CV_16S depth and 1 or 4 channels are supported.
- For a four-channel image, all channels are processed separately.
- @param hist Destination histogram with one row, (levels.cols-1) columns, and the CV_32SC1 type.
- @param levels Number of levels in the histogram.
- @param stream Stream for the asynchronous version.
- */
- CV_EXPORTS void histRange(InputArray src, OutputArray hist, InputArray levels, Stream& stream = Stream::Null());
- /** @overload */
- CV_EXPORTS void histRange(InputArray src, GpuMat hist[4], const GpuMat levels[4], Stream& stream = Stream::Null());
- //! @} cudaimgproc_hist
- //////////////////////////////// Canny ////////////////////////////////
- /** @brief Base class for Canny Edge Detector. :
- */
- class CV_EXPORTS CannyEdgeDetector : public Algorithm
- {
- public:
- /** @brief Finds edges in an image using the @cite Canny86 algorithm.
- @param image Single-channel 8-bit input image.
- @param edges Output edge map. It has the same size and type as image.
- @param stream Stream for the asynchronous version.
- */
- virtual void detect(InputArray image, OutputArray edges, Stream& stream = Stream::Null()) = 0;
- /** @overload
- @param dx First derivative of image in the vertical direction. Support only CV_32S type.
- @param dy First derivative of image in the horizontal direction. Support only CV_32S type.
- @param edges Output edge map. It has the same size and type as image.
- @param stream Stream for the asynchronous version.
- */
- virtual void detect(InputArray dx, InputArray dy, OutputArray edges, Stream& stream = Stream::Null()) = 0;
- virtual void setLowThreshold(double low_thresh) = 0;
- virtual double getLowThreshold() const = 0;
- virtual void setHighThreshold(double high_thresh) = 0;
- virtual double getHighThreshold() const = 0;
- virtual void setAppertureSize(int apperture_size) = 0;
- virtual int getAppertureSize() const = 0;
- virtual void setL2Gradient(bool L2gradient) = 0;
- virtual bool getL2Gradient() const = 0;
- };
- /** @brief Creates implementation for cuda::CannyEdgeDetector .
- @param low_thresh First threshold for the hysteresis procedure.
- @param high_thresh Second threshold for the hysteresis procedure.
- @param apperture_size Aperture size for the Sobel operator.
- @param L2gradient Flag indicating whether a more accurate \f$L_2\f$ norm
- \f$=\sqrt{(dI/dx)^2 + (dI/dy)^2}\f$ should be used to compute the image gradient magnitude (
- L2gradient=true ), or a faster default \f$L_1\f$ norm \f$=|dI/dx|+|dI/dy|\f$ is enough ( L2gradient=false
- ).
- */
- CV_EXPORTS Ptr<CannyEdgeDetector> createCannyEdgeDetector(double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false);
- /////////////////////////// Hough Transform ////////////////////////////
- //////////////////////////////////////
- // HoughLines
- //! @addtogroup cudaimgproc_hough
- //! @{
- /** @brief Base class for lines detector algorithm. :
- */
- class CV_EXPORTS HoughLinesDetector : public Algorithm
- {
- public:
- /** @brief Finds lines in a binary image using the classical Hough transform.
- @param src 8-bit, single-channel binary source image.
- @param lines Output vector of lines. Each line is represented by a two-element vector
- \f$(\rho, \theta)\f$ . \f$\rho\f$ is the distance from the coordinate origin \f$(0,0)\f$ (top-left corner of
- the image). \f$\theta\f$ is the line rotation angle in radians (
- \f$0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\f$ ).
- @param stream Stream for the asynchronous version.
- @sa HoughLines
- */
- virtual void detect(InputArray src, OutputArray lines, Stream& stream = Stream::Null()) = 0;
- /** @brief Downloads results from cuda::HoughLinesDetector::detect to host memory.
- @param d_lines Result of cuda::HoughLinesDetector::detect .
- @param h_lines Output host array.
- @param h_votes Optional output array for line's votes.
- @param stream Stream for the asynchronous version.
- */
- virtual void downloadResults(InputArray d_lines, OutputArray h_lines, OutputArray h_votes = noArray(), Stream& stream = Stream::Null()) = 0;
- virtual void setRho(float rho) = 0;
- virtual float getRho() const = 0;
- virtual void setTheta(float theta) = 0;
- virtual float getTheta() const = 0;
- virtual void setThreshold(int threshold) = 0;
- virtual int getThreshold() const = 0;
- virtual void setDoSort(bool doSort) = 0;
- virtual bool getDoSort() const = 0;
- virtual void setMaxLines(int maxLines) = 0;
- virtual int getMaxLines() const = 0;
- };
- /** @brief Creates implementation for cuda::HoughLinesDetector .
- @param rho Distance resolution of the accumulator in pixels.
- @param theta Angle resolution of the accumulator in radians.
- @param threshold Accumulator threshold parameter. Only those lines are returned that get enough
- votes ( \f$>\texttt{threshold}\f$ ).
- @param doSort Performs lines sort by votes.
- @param maxLines Maximum number of output lines.
- */
- CV_EXPORTS Ptr<HoughLinesDetector> createHoughLinesDetector(float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096);
- //////////////////////////////////////
- // HoughLinesP
- /** @brief Base class for line segments detector algorithm. :
- */
- class CV_EXPORTS HoughSegmentDetector : public Algorithm
- {
- public:
- /** @brief Finds line segments in a binary image using the probabilistic Hough transform.
- @param src 8-bit, single-channel binary source image.
- @param lines Output vector of lines. Each line is represented by a 4-element vector
- \f$(x_1, y_1, x_2, y_2)\f$ , where \f$(x_1,y_1)\f$ and \f$(x_2, y_2)\f$ are the ending points of each detected
- line segment.
- @param stream Stream for the asynchronous version.
- @sa HoughLinesP
- */
- virtual void detect(InputArray src, OutputArray lines, Stream& stream = Stream::Null()) = 0;
- virtual void setRho(float rho) = 0;
- virtual float getRho() const = 0;
- virtual void setTheta(float theta) = 0;
- virtual float getTheta() const = 0;
- virtual void setMinLineLength(int minLineLength) = 0;
- virtual int getMinLineLength() const = 0;
- virtual void setMaxLineGap(int maxLineGap) = 0;
- virtual int getMaxLineGap() const = 0;
- virtual void setMaxLines(int maxLines) = 0;
- virtual int getMaxLines() const = 0;
- };
- /** @brief Creates implementation for cuda::HoughSegmentDetector .
- @param rho Distance resolution of the accumulator in pixels.
- @param theta Angle resolution of the accumulator in radians.
- @param minLineLength Minimum line length. Line segments shorter than that are rejected.
- @param maxLineGap Maximum allowed gap between points on the same line to link them.
- @param maxLines Maximum number of output lines.
- */
- CV_EXPORTS Ptr<HoughSegmentDetector> createHoughSegmentDetector(float rho, float theta, int minLineLength, int maxLineGap, int maxLines = 4096);
- //////////////////////////////////////
- // HoughCircles
- /** @brief Base class for circles detector algorithm. :
- */
- class CV_EXPORTS HoughCirclesDetector : public Algorithm
- {
- public:
- /** @brief Finds circles in a grayscale image using the Hough transform.
- @param src 8-bit, single-channel grayscale input image.
- @param circles Output vector of found circles. Each vector is encoded as a 3-element
- floating-point vector \f$(x, y, radius)\f$ .
- @param stream Stream for the asynchronous version.
- @sa HoughCircles
- */
- virtual void detect(InputArray src, OutputArray circles, Stream& stream = Stream::Null()) = 0;
- virtual void setDp(float dp) = 0;
- virtual float getDp() const = 0;
- virtual void setMinDist(float minDist) = 0;
- virtual float getMinDist() const = 0;
- virtual void setCannyThreshold(int cannyThreshold) = 0;
- virtual int getCannyThreshold() const = 0;
- virtual void setVotesThreshold(int votesThreshold) = 0;
- virtual int getVotesThreshold() const = 0;
- virtual void setMinRadius(int minRadius) = 0;
- virtual int getMinRadius() const = 0;
- virtual void setMaxRadius(int maxRadius) = 0;
- virtual int getMaxRadius() const = 0;
- virtual void setMaxCircles(int maxCircles) = 0;
- virtual int getMaxCircles() const = 0;
- };
- /** @brief Creates implementation for cuda::HoughCirclesDetector .
- @param dp Inverse ratio of the accumulator resolution to the image resolution. For example, if
- dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has
- half as big width and height.
- @param minDist Minimum distance between the centers of the detected circles. If the parameter is
- too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is
- too large, some circles may be missed.
- @param cannyThreshold The higher threshold of the two passed to Canny edge detector (the lower one
- is twice smaller).
- @param votesThreshold The accumulator threshold for the circle centers at the detection stage. The
- smaller it is, the more false circles may be detected.
- @param minRadius Minimum circle radius.
- @param maxRadius Maximum circle radius.
- @param maxCircles Maximum number of output circles.
- */
- CV_EXPORTS Ptr<HoughCirclesDetector> createHoughCirclesDetector(float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096);
- //////////////////////////////////////
- // GeneralizedHough
- /** @brief Creates implementation for generalized hough transform from @cite Ballard1981 .
- */
- CV_EXPORTS Ptr<GeneralizedHoughBallard> createGeneralizedHoughBallard();
- /** @brief Creates implementation for generalized hough transform from @cite Guil1999 .
- */
- CV_EXPORTS Ptr<GeneralizedHoughGuil> createGeneralizedHoughGuil();
- //! @} cudaimgproc_hough
- ////////////////////////// Corners Detection ///////////////////////////
- //! @addtogroup cudaimgproc_feature
- //! @{
- /** @brief Base class for Cornerness Criteria computation. :
- */
- class CV_EXPORTS CornernessCriteria : public Algorithm
- {
- public:
- /** @brief Computes the cornerness criteria at each image pixel.
- @param src Source image.
- @param dst Destination image containing cornerness values. It will have the same size as src and
- CV_32FC1 type.
- @param stream Stream for the asynchronous version.
- */
- virtual void compute(InputArray src, OutputArray dst, Stream& stream = Stream::Null()) = 0;
- };
- /** @brief Creates implementation for Harris cornerness criteria.
- @param srcType Input source type. Only CV_8UC1 and CV_32FC1 are supported for now.
- @param blockSize Neighborhood size.
- @param ksize Aperture parameter for the Sobel operator.
- @param k Harris detector free parameter.
- @param borderType Pixel extrapolation method. Only BORDER_REFLECT101 and BORDER_REPLICATE are
- supported for now.
- @sa cornerHarris
- */
- CV_EXPORTS Ptr<CornernessCriteria> createHarrisCorner(int srcType, int blockSize, int ksize, double k, int borderType = BORDER_REFLECT101);
- /** @brief Creates implementation for the minimum eigen value of a 2x2 derivative covariation matrix (the
- cornerness criteria).
- @param srcType Input source type. Only CV_8UC1 and CV_32FC1 are supported for now.
- @param blockSize Neighborhood size.
- @param ksize Aperture parameter for the Sobel operator.
- @param borderType Pixel extrapolation method. Only BORDER_REFLECT101 and BORDER_REPLICATE are
- supported for now.
- @sa cornerMinEigenVal
- */
- CV_EXPORTS Ptr<CornernessCriteria> createMinEigenValCorner(int srcType, int blockSize, int ksize, int borderType = BORDER_REFLECT101);
- ////////////////////////// Corners Detection ///////////////////////////
- /** @brief Base class for Corners Detector. :
- */
- class CV_EXPORTS CornersDetector : public Algorithm
- {
- public:
- /** @brief Determines strong corners on an image.
- @param image Input 8-bit or floating-point 32-bit, single-channel image.
- @param corners Output vector of detected corners (1-row matrix with CV_32FC2 type with corners
- positions).
- @param mask Optional region of interest. If the image is not empty (it needs to have the type
- CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
- @param stream Stream for the asynchronous version.
- */
- virtual void detect(InputArray image, OutputArray corners, InputArray mask = noArray(), Stream& stream = Stream::Null()) = 0;
- };
- /** @brief Creates implementation for cuda::CornersDetector .
- @param srcType Input source type. Only CV_8UC1 and CV_32FC1 are supported for now.
- @param maxCorners Maximum number of corners to return. If there are more corners than are found,
- the strongest of them is returned.
- @param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
- parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
- (see cornerMinEigenVal ) or the Harris function response (see cornerHarris ). The corners with the
- quality measure less than the product are rejected. For example, if the best corner has the
- quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
- less than 15 are rejected.
- @param minDistance Minimum possible Euclidean distance between the returned corners.
- @param blockSize Size of an average block for computing a derivative covariation matrix over each
- pixel neighborhood. See cornerEigenValsAndVecs .
- @param useHarrisDetector Parameter indicating whether to use a Harris detector (see cornerHarris)
- or cornerMinEigenVal.
- @param harrisK Free parameter of the Harris detector.
- */
- CV_EXPORTS Ptr<CornersDetector> createGoodFeaturesToTrackDetector(int srcType, int maxCorners = 1000, double qualityLevel = 0.01, double minDistance = 0.0,
- int blockSize = 3, bool useHarrisDetector = false, double harrisK = 0.04);
- //! @} cudaimgproc_feature
- ///////////////////////////// Mean Shift //////////////////////////////
- /** @brief Performs mean-shift filtering for each point of the source image.
- @param src Source image. Only CV_8UC4 images are supported for now.
- @param dst Destination image containing the color of mapped points. It has the same size and type
- as src .
- @param sp Spatial window radius.
- @param sr Color window radius.
- @param criteria Termination criteria. See TermCriteria.
- @param stream Stream for the asynchronous version.
- It maps each point of the source image into another point. As a result, you have a new color and new
- position of each point.
- */
- CV_EXPORTS void meanShiftFiltering(InputArray src, OutputArray dst, int sp, int sr,
- TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1),
- Stream& stream = Stream::Null());
- /** @brief Performs a mean-shift procedure and stores information about processed points (their colors and
- positions) in two images.
- @param src Source image. Only CV_8UC4 images are supported for now.
- @param dstr Destination image containing the color of mapped points. The size and type is the same
- as src .
- @param dstsp Destination image containing the position of mapped points. The size is the same as
- src size. The type is CV_16SC2 .
- @param sp Spatial window radius.
- @param sr Color window radius.
- @param criteria Termination criteria. See TermCriteria.
- @param stream Stream for the asynchronous version.
- @sa cuda::meanShiftFiltering
- */
- CV_EXPORTS void meanShiftProc(InputArray src, OutputArray dstr, OutputArray dstsp, int sp, int sr,
- TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1),
- Stream& stream = Stream::Null());
- /** @brief Performs a mean-shift segmentation of the source image and eliminates small segments.
- @param src Source image. Only CV_8UC4 images are supported for now.
- @param dst Segmented image with the same size and type as src (host memory).
- @param sp Spatial window radius.
- @param sr Color window radius.
- @param minsize Minimum segment size. Smaller segments are merged.
- @param criteria Termination criteria. See TermCriteria.
- @param stream Stream for the asynchronous version.
- */
- CV_EXPORTS void meanShiftSegmentation(InputArray src, OutputArray dst, int sp, int sr, int minsize,
- TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1),
- Stream& stream = Stream::Null());
- /////////////////////////// Match Template ////////////////////////////
- /** @brief Base class for Template Matching. :
- */
- class CV_EXPORTS TemplateMatching : public Algorithm
- {
- public:
- /** @brief Computes a proximity map for a raster template and an image where the template is searched for.
- @param image Source image.
- @param templ Template image with the size and type the same as image .
- @param result Map containing comparison results ( CV_32FC1 ). If image is *W x H* and templ is *w
- x h*, then result must be *W-w+1 x H-h+1*.
- @param stream Stream for the asynchronous version.
- */
- virtual void match(InputArray image, InputArray templ, OutputArray result, Stream& stream = Stream::Null()) = 0;
- };
- /** @brief Creates implementation for cuda::TemplateMatching .
- @param srcType Input source type. CV_32F and CV_8U depth images (1..4 channels) are supported
- for now.
- @param method Specifies the way to compare the template with the image.
- @param user_block_size You can use field user_block_size to set specific block size. If you
- leave its default value Size(0,0) then automatic estimation of block size will be used (which is
- optimized for speed). By varying user_block_size you can reduce memory requirements at the cost
- of speed.
- The following methods are supported for the CV_8U depth images for now:
- - CV_TM_SQDIFF
- - CV_TM_SQDIFF_NORMED
- - CV_TM_CCORR
- - CV_TM_CCORR_NORMED
- - CV_TM_CCOEFF
- - CV_TM_CCOEFF_NORMED
- The following methods are supported for the CV_32F images for now:
- - CV_TM_SQDIFF
- - CV_TM_CCORR
- @sa matchTemplate
- */
- CV_EXPORTS Ptr<TemplateMatching> createTemplateMatching(int srcType, int method, Size user_block_size = Size());
- ////////////////////////// Bilateral Filter ///////////////////////////
- /** @brief Performs bilateral filtering of passed image
- @param src Source image. Supports only (channels != 2 && depth() != CV_8S && depth() != CV_32S
- && depth() != CV_64F).
- @param dst Destination imagwe.
- @param kernel_size Kernel window size.
- @param sigma_color Filter sigma in the color space.
- @param sigma_spatial Filter sigma in the coordinate space.
- @param borderMode Border type. See borderInterpolate for details. BORDER_REFLECT101 ,
- BORDER_REPLICATE , BORDER_CONSTANT , BORDER_REFLECT and BORDER_WRAP are supported for now.
- @param stream Stream for the asynchronous version.
- @sa bilateralFilter
- */
- CV_EXPORTS void bilateralFilter(InputArray src, OutputArray dst, int kernel_size, float sigma_color, float sigma_spatial,
- int borderMode = BORDER_DEFAULT, Stream& stream = Stream::Null());
- ///////////////////////////// Blending ////////////////////////////////
- /** @brief Performs linear blending of two images.
- @param img1 First image. Supports only CV_8U and CV_32F depth.
- @param img2 Second image. Must have the same size and the same type as img1 .
- @param weights1 Weights for first image. Must have tha same size as img1 . Supports only CV_32F
- type.
- @param weights2 Weights for second image. Must have tha same size as img2 . Supports only CV_32F
- type.
- @param result Destination image.
- @param stream Stream for the asynchronous version.
- */
- CV_EXPORTS void blendLinear(InputArray img1, InputArray img2, InputArray weights1, InputArray weights2,
- OutputArray result, Stream& stream = Stream::Null());
- //! @}
- }} // namespace cv { namespace cuda {
- #endif /* OPENCV_CUDAIMGPROC_HPP */
|