123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #ifndef OPENCV_CUDAOPTFLOW_HPP
- #define OPENCV_CUDAOPTFLOW_HPP
- #ifndef __cplusplus
- # error cudaoptflow.hpp header must be compiled as C++
- #endif
- #include "opencv2/core/cuda.hpp"
- /**
- @addtogroup cuda
- @{
- @defgroup cudaoptflow Optical Flow
- @}
- */
- namespace cv { namespace cuda {
- //! @addtogroup cudaoptflow
- //! @{
- //
- // Interface
- //
- /** @brief Base interface for dense optical flow algorithms.
- */
- class CV_EXPORTS DenseOpticalFlow : public Algorithm
- {
- public:
- /** @brief Calculates a dense optical flow.
- @param I0 first input image.
- @param I1 second input image of the same size and the same type as I0.
- @param flow computed flow image that has the same size as I0 and type CV_32FC2.
- @param stream Stream for the asynchronous version.
- */
- virtual void calc(InputArray I0, InputArray I1, InputOutputArray flow, Stream& stream = Stream::Null()) = 0;
- };
- /** @brief Base interface for sparse optical flow algorithms.
- */
- class CV_EXPORTS SparseOpticalFlow : public Algorithm
- {
- public:
- /** @brief Calculates a sparse optical flow.
- @param prevImg First input image.
- @param nextImg Second input image of the same size and the same type as prevImg.
- @param prevPts Vector of 2D points for which the flow needs to be found.
- @param nextPts Output vector of 2D points containing the calculated new positions of input features in the second image.
- @param status Output status vector. Each element of the vector is set to 1 if the
- flow for the corresponding features has been found. Otherwise, it is set to 0.
- @param err Optional output vector that contains error response for each point (inverse confidence).
- @param stream Stream for the asynchronous version.
- */
- virtual void calc(InputArray prevImg, InputArray nextImg,
- InputArray prevPts, InputOutputArray nextPts,
- OutputArray status,
- OutputArray err = cv::noArray(),
- Stream& stream = Stream::Null()) = 0;
- };
- //
- // BroxOpticalFlow
- //
- /** @brief Class computing the optical flow for two images using Brox et al Optical Flow algorithm (@cite Brox2004).
- */
- class CV_EXPORTS BroxOpticalFlow : public DenseOpticalFlow
- {
- public:
- virtual double getFlowSmoothness() const = 0;
- virtual void setFlowSmoothness(double alpha) = 0;
- virtual double getGradientConstancyImportance() const = 0;
- virtual void setGradientConstancyImportance(double gamma) = 0;
- virtual double getPyramidScaleFactor() const = 0;
- virtual void setPyramidScaleFactor(double scale_factor) = 0;
- //! number of lagged non-linearity iterations (inner loop)
- virtual int getInnerIterations() const = 0;
- virtual void setInnerIterations(int inner_iterations) = 0;
- //! number of warping iterations (number of pyramid levels)
- virtual int getOuterIterations() const = 0;
- virtual void setOuterIterations(int outer_iterations) = 0;
- //! number of linear system solver iterations
- virtual int getSolverIterations() const = 0;
- virtual void setSolverIterations(int solver_iterations) = 0;
- static Ptr<BroxOpticalFlow> create(
- double alpha = 0.197,
- double gamma = 50.0,
- double scale_factor = 0.8,
- int inner_iterations = 5,
- int outer_iterations = 150,
- int solver_iterations = 10);
- };
- //
- // PyrLKOpticalFlow
- //
- /** @brief Class used for calculating a sparse optical flow.
- The class can calculate an optical flow for a sparse feature set using the
- iterative Lucas-Kanade method with pyramids.
- @sa calcOpticalFlowPyrLK
- @note
- - An example of the Lucas Kanade optical flow algorithm can be found at
- opencv_source_code/samples/gpu/pyrlk_optical_flow.cpp
- */
- class CV_EXPORTS SparsePyrLKOpticalFlow : public SparseOpticalFlow
- {
- public:
- virtual Size getWinSize() const = 0;
- virtual void setWinSize(Size winSize) = 0;
- virtual int getMaxLevel() const = 0;
- virtual void setMaxLevel(int maxLevel) = 0;
- virtual int getNumIters() const = 0;
- virtual void setNumIters(int iters) = 0;
- virtual bool getUseInitialFlow() const = 0;
- virtual void setUseInitialFlow(bool useInitialFlow) = 0;
- static Ptr<SparsePyrLKOpticalFlow> create(
- Size winSize = Size(21, 21),
- int maxLevel = 3,
- int iters = 30,
- bool useInitialFlow = false);
- };
- /** @brief Class used for calculating a dense optical flow.
- The class can calculate an optical flow for a dense optical flow using the
- iterative Lucas-Kanade method with pyramids.
- */
- class CV_EXPORTS DensePyrLKOpticalFlow : public DenseOpticalFlow
- {
- public:
- virtual Size getWinSize() const = 0;
- virtual void setWinSize(Size winSize) = 0;
- virtual int getMaxLevel() const = 0;
- virtual void setMaxLevel(int maxLevel) = 0;
- virtual int getNumIters() const = 0;
- virtual void setNumIters(int iters) = 0;
- virtual bool getUseInitialFlow() const = 0;
- virtual void setUseInitialFlow(bool useInitialFlow) = 0;
- static Ptr<DensePyrLKOpticalFlow> create(
- Size winSize = Size(13, 13),
- int maxLevel = 3,
- int iters = 30,
- bool useInitialFlow = false);
- };
- //
- // FarnebackOpticalFlow
- //
- /** @brief Class computing a dense optical flow using the Gunnar Farneback's algorithm.
- */
- class CV_EXPORTS FarnebackOpticalFlow : public DenseOpticalFlow
- {
- public:
- virtual int getNumLevels() const = 0;
- virtual void setNumLevels(int numLevels) = 0;
- virtual double getPyrScale() const = 0;
- virtual void setPyrScale(double pyrScale) = 0;
- virtual bool getFastPyramids() const = 0;
- virtual void setFastPyramids(bool fastPyramids) = 0;
- virtual int getWinSize() const = 0;
- virtual void setWinSize(int winSize) = 0;
- virtual int getNumIters() const = 0;
- virtual void setNumIters(int numIters) = 0;
- virtual int getPolyN() const = 0;
- virtual void setPolyN(int polyN) = 0;
- virtual double getPolySigma() const = 0;
- virtual void setPolySigma(double polySigma) = 0;
- virtual int getFlags() const = 0;
- virtual void setFlags(int flags) = 0;
- static Ptr<FarnebackOpticalFlow> create(
- int numLevels = 5,
- double pyrScale = 0.5,
- bool fastPyramids = false,
- int winSize = 13,
- int numIters = 10,
- int polyN = 5,
- double polySigma = 1.1,
- int flags = 0);
- };
- //
- // OpticalFlowDual_TVL1
- //
- /** @brief Implementation of the Zach, Pock and Bischof Dual TV-L1 Optical Flow method.
- *
- * @note C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow".
- * @note Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation".
- */
- class CV_EXPORTS OpticalFlowDual_TVL1 : public DenseOpticalFlow
- {
- public:
- /**
- * Time step of the numerical scheme.
- */
- virtual double getTau() const = 0;
- virtual void setTau(double tau) = 0;
- /**
- * Weight parameter for the data term, attachment parameter.
- * This is the most relevant parameter, which determines the smoothness of the output.
- * The smaller this parameter is, the smoother the solutions we obtain.
- * It depends on the range of motions of the images, so its value should be adapted to each image sequence.
- */
- virtual double getLambda() const = 0;
- virtual void setLambda(double lambda) = 0;
- /**
- * Weight parameter for (u - v)^2, tightness parameter.
- * It serves as a link between the attachment and the regularization terms.
- * In theory, it should have a small value in order to maintain both parts in correspondence.
- * The method is stable for a large range of values of this parameter.
- */
- virtual double getGamma() const = 0;
- virtual void setGamma(double gamma) = 0;
- /**
- * parameter used for motion estimation. It adds a variable allowing for illumination variations
- * Set this parameter to 1. if you have varying illumination.
- * See: Chambolle et al, A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging
- * Journal of Mathematical imaging and vision, may 2011 Vol 40 issue 1, pp 120-145
- */
- virtual double getTheta() const = 0;
- virtual void setTheta(double theta) = 0;
- /**
- * Number of scales used to create the pyramid of images.
- */
- virtual int getNumScales() const = 0;
- virtual void setNumScales(int nscales) = 0;
- /**
- * Number of warpings per scale.
- * Represents the number of times that I1(x+u0) and grad( I1(x+u0) ) are computed per scale.
- * This is a parameter that assures the stability of the method.
- * It also affects the running time, so it is a compromise between speed and accuracy.
- */
- virtual int getNumWarps() const = 0;
- virtual void setNumWarps(int warps) = 0;
- /**
- * Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time.
- * A small value will yield more accurate solutions at the expense of a slower convergence.
- */
- virtual double getEpsilon() const = 0;
- virtual void setEpsilon(double epsilon) = 0;
- /**
- * Stopping criterion iterations number used in the numerical scheme.
- */
- virtual int getNumIterations() const = 0;
- virtual void setNumIterations(int iterations) = 0;
- virtual double getScaleStep() const = 0;
- virtual void setScaleStep(double scaleStep) = 0;
- virtual bool getUseInitialFlow() const = 0;
- virtual void setUseInitialFlow(bool useInitialFlow) = 0;
- static Ptr<OpticalFlowDual_TVL1> create(
- double tau = 0.25,
- double lambda = 0.15,
- double theta = 0.3,
- int nscales = 5,
- int warps = 5,
- double epsilon = 0.01,
- int iterations = 300,
- double scaleStep = 0.8,
- double gamma = 0.0,
- bool useInitialFlow = false);
- };
- //! @}
- }} // namespace cv { namespace cuda {
- #endif /* OPENCV_CUDAOPTFLOW_HPP */
|