123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
- // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #pragma once
- #ifndef OPENCV_CUDEV_WARP_REDUCE_DETAIL_HPP
- #define OPENCV_CUDEV_WARP_REDUCE_DETAIL_HPP
- #include "../../common.hpp"
- #include "../../util/tuple.hpp"
- #include "../../warp/shuffle.hpp"
- namespace cv { namespace cudev {
- namespace warp_reduce_detail
- {
- // GetType
- template <typename T> struct GetType;
- template <typename T> struct GetType<T*>
- {
- typedef T type;
- };
- template <typename T> struct GetType<volatile T*>
- {
- typedef T type;
- };
- template <typename T> struct GetType<T&>
- {
- typedef T type;
- };
- // For
- template <int I, int N> struct For
- {
- template <class PointerTuple, class ValTuple>
- __device__ static void loadToSmem(const PointerTuple& smem, const ValTuple& val, uint tid)
- {
- get<I>(smem)[tid] = get<I>(val);
- For<I + 1, N>::loadToSmem(smem, val, tid);
- }
- template <class PointerTuple, class ValTuple, class OpTuple>
- __device__ static void merge(const PointerTuple& smem, const ValTuple& val, uint tid, uint delta, const OpTuple& op)
- {
- typename GetType<typename tuple_element<I, PointerTuple>::type>::type reg = get<I>(smem)[tid + delta];
- get<I>(smem)[tid] = get<I>(val) = get<I>(op)(get<I>(val), reg);
- For<I + 1, N>::merge(smem, val, tid, delta, op);
- }
- #if CV_CUDEV_ARCH >= 300
- template <class ValTuple, class OpTuple>
- __device__ static void mergeShfl(const ValTuple& val, uint delta, uint width, const OpTuple& op)
- {
- typename GetType<typename tuple_element<I, ValTuple>::type>::type reg = shfl_down(get<I>(val), delta, width);
- get<I>(val) = get<I>(op)(get<I>(val), reg);
- For<I + 1, N>::mergeShfl(val, delta, width, op);
- }
- #endif
- };
- template <int N> struct For<N, N>
- {
- template <class PointerTuple, class ValTuple>
- __device__ __forceinline__ static void loadToSmem(const PointerTuple&, const ValTuple&, uint)
- {
- }
- template <class PointerTuple, class ValTuple, class OpTuple>
- __device__ __forceinline__ static void merge(const PointerTuple&, const ValTuple&, uint, uint, const OpTuple&)
- {
- }
- #if CV_CUDEV_ARCH >= 300
- template <class ValTuple, class OpTuple>
- __device__ __forceinline__ static void mergeShfl(const ValTuple&, uint, uint, const OpTuple&)
- {
- }
- #endif
- };
- // loadToSmem
- template <typename T>
- __device__ __forceinline__ void loadToSmem(volatile T* smem, T& val, uint tid)
- {
- smem[tid] = val;
- }
- template <typename P0, typename P1, typename P2, typename P3, typename P4, typename P5, typename P6, typename P7, typename P8, typename P9,
- typename R0, typename R1, typename R2, typename R3, typename R4, typename R5, typename R6, typename R7, typename R8, typename R9>
- __device__ __forceinline__ void loadToSmem(const tuple<P0, P1, P2, P3, P4, P5, P6, P7, P8, P9>& smem,
- const tuple<R0, R1, R2, R3, R4, R5, R6, R7, R8, R9>& val,
- uint tid)
- {
- For<0, tuple_size<tuple<P0, P1, P2, P3, P4, P5, P6, P7, P8, P9> >::value>::loadToSmem(smem, val, tid);
- }
- // merge
- template <typename T, class Op>
- __device__ __forceinline__ void merge(volatile T* smem, T& val, uint tid, uint delta, const Op& op)
- {
- T reg = smem[tid + delta];
- smem[tid] = val = op(val, reg);
- }
- template <typename P0, typename P1, typename P2, typename P3, typename P4, typename P5, typename P6, typename P7, typename P8, typename P9,
- typename R0, typename R1, typename R2, typename R3, typename R4, typename R5, typename R6, typename R7, typename R8, typename R9,
- class Op0, class Op1, class Op2, class Op3, class Op4, class Op5, class Op6, class Op7, class Op8, class Op9>
- __device__ __forceinline__ void merge(const tuple<P0, P1, P2, P3, P4, P5, P6, P7, P8, P9>& smem,
- const tuple<R0, R1, R2, R3, R4, R5, R6, R7, R8, R9>& val,
- uint tid,
- uint delta,
- const tuple<Op0, Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8, Op9>& op)
- {
- For<0, tuple_size<tuple<P0, P1, P2, P3, P4, P5, P6, P7, P8, P9> >::value>::merge(smem, val, tid, delta, op);
- }
- // mergeShfl
- #if CV_CUDEV_ARCH >= 300
- template <typename T, class Op>
- __device__ __forceinline__ void mergeShfl(T& val, uint delta, uint width, const Op& op)
- {
- T reg = shfl_down(val, delta, width);
- val = op(val, reg);
- }
- template <typename R0, typename R1, typename R2, typename R3, typename R4, typename R5, typename R6, typename R7, typename R8, typename R9,
- class Op0, class Op1, class Op2, class Op3, class Op4, class Op5, class Op6, class Op7, class Op8, class Op9>
- __device__ __forceinline__ void mergeShfl(const tuple<R0, R1, R2, R3, R4, R5, R6, R7, R8, R9>& val,
- uint delta,
- uint width,
- const tuple<Op0, Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8, Op9>& op)
- {
- For<0, tuple_size<tuple<R0, R1, R2, R3, R4, R5, R6, R7, R8, R9> >::value>::mergeShfl(val, delta, width, op);
- }
- #endif
- // WarpReductor
- struct WarpReductor
- {
- template <typename Pointer, typename Reference, class Op>
- __device__ static void reduce(Pointer smem, Reference val, uint tid, Op op)
- {
- #if CV_CUDEV_ARCH >= 300
- CV_UNUSED(smem);
- CV_UNUSED(tid);
- mergeShfl(val, 16, 32, op);
- mergeShfl(val, 8, 32, op);
- mergeShfl(val, 4, 32, op);
- mergeShfl(val, 2, 32, op);
- mergeShfl(val, 1, 32, op);
- #else
- loadToSmem(smem, val, tid);
- if (tid < 16)
- {
- merge(smem, val, tid, 16, op);
- merge(smem, val, tid, 8, op);
- merge(smem, val, tid, 4, op);
- merge(smem, val, tid, 2, op);
- merge(smem, val, tid, 1, op);
- }
- #endif
- }
- };
- }
- }}
- #endif
|