123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132 |
- import os
- import base64
- import json
- import time
- from PIL import Image
- from io import BytesIO
- import logging
- from openai import OpenAI
- from retry import retry
- import requests
- class AliImageValidator:
- def __init__(self, api_key="sk-ccfcdd12fd434d0dab1406958663df9d"):
- self.client = OpenAI(
- base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
- api_key=api_key or os.environ.get("DASHSCOPE_API_KEY")
- )
- if not self.client.api_key:
- raise ValueError("未找到API密钥,请设置环境变量DASHSCOPE_API_KEY或通过参数传递")
- logging.basicConfig(
- format='%(asctime)s - %(levelname)s - %(message)s',
- level=logging.DEBUG
- )
- @retry(tries=3, delay=1, backoff=2, max_delay=5, exceptions=(Exception,))
- def analyze_image(self, image_url):
- if not image_url.startswith(('http://', 'https://')):
- return {
- 'is_false_positive': False,
- 'uav_detected': False,
- 'probability': 0.0,
- 'reason': '无效的图片URL',
- 'response_time': 0.0
- }
- system_prompt = """
- 你是一个专业的图像分析专家,请严格按照以下要求响应:
- 1. 输出必须为合法的JSON格式,不能是纯自然语言段落
- 2. 包含三个字段:
- probability(误报概率0-1)
- is_uav(是否是无人机 bool)
- reason(分析理由)
- 3. 不要包含任何额外说明
- 请分析该监控画面:
- - 判断是否为安全误报
- - 识别画面中是否存在无人机
- - 给出详细分析理由
- """
- try:
- start_time = time.time()
- model_name = "qwen-vl-max-latest"
- logging.info(f"发送请求到阿里云 | 端点: {self.client.base_url} | 模型: {model_name}")
- response = self.client.chat.completions.create(
- model=model_name,
- messages=[
- {"role": "system", "content": [{"type": "text", "text": system_prompt}]},
- {
- "role": "user",
- "content": [
- {
- "type": "image_url",
- "image_url": {
- "url": image_url
- }
- },
- {"type": "text", "text": "请分析该监控画面是否为误报"}
- ]
- }
- ]
- )
- end_time = time.time()
- response_time = end_time - start_time
-
- try:
- result = response.choices[0].message.content
- logging.debug(f"原始响应内容: {result}")
- try:
- result_json = json.loads(result.split('```json')[1].split('```')[0].strip()) # 提取markdown代码块中的JSON
-
- return {
- 'is_false_positive': result_json.get('is_false_positive', False),
- 'uav_detected': result_json.get('is_uav', False),
- 'probability': result_json.get('probability', 0.0),
- 'reason': result_json.get('reason', '无分析结果'),
- 'response_time': response_time
- }
- except (IndexError, json.JSONDecodeError, KeyError) as e:
- logging.error(f"响应解析失败 | 错误类型: {type(e).__name__} | 原始响应: {result}")
- return {
- 'is_false_positive': "误报" in result,
- 'uav_detected': False,
- 'probability': 0.0,
- 'reason': '响应格式异常',
- 'response_time': response_time
- }
- except (json.JSONDecodeError, ValueError) as e:
- logging.error(f"响应解析失败: {str(e)}")
- return {
- 'is_false_positive': "误报" in result,
- 'uav_detected': False,
- 'probability': 0.0,
- 'reason': '解析失败',
- 'response_time': response_time
- }
- except Exception as e:
- end_time = time.time()
- response_time = end_time - start_time
- logging.error(f"API调用失败 | 端点: {self.client.base_url} | 模型: {model_name} | 错误类型: {type(e).__name__} | 错误详情: {str(e)}")
- return {
- 'is_false_positive': False,
- 'uav_detected': False,
- 'probability': 0.0,
- 'reason': 'API调用失败',
- 'response_time': response_time
- }
- if __name__ == "__main__":
- import argparse
-
- parser = argparse.ArgumentParser(description='阿里云图像误报分析工具')
- parser.add_argument('image_url', help='需要分析的图片URL地址')
- args = parser.parse_args()
- validator = AliImageValidator()
- result = validator.analyze_image(args.image_url)
-
- print(f"综合分析结果:\n误报概率: {result['probability']:.2f}\n无人机识别: {'是' if result['uav_detected'] else '否'}\n判定结果: {'误报' if result['is_false_positive'] else '真实威胁'}\n响应时间: {result['response_time']:.2f}秒\n分析理由: {result['reason']}")
|